

Potential for district heating networks from waste heat: an assessment tool and its application to sewage treatment plants in the Canton of Zurich

G. Peronato¹, J.H. Kämpf^{1,2} {giuseppe.peronato,jerome.kaempf}@idiap.ch

¹Idiap Research Institute, Martigny, Switzerland ²L'IDIAP Laboratory, EPFL, Lausanne, Switzerland

OBJECTIVES

- Evaluation of low-temperature distring heating networks (DHN) potential from waste-heat sources
- Application of graph and clustering techniques to define the pipework linking to potential consumers
- Estimation of the energy and financial viability of DHNs sourced by sewage treatment plants in Zurich area

METHODOLOGY

- Application of the **DHgeN open-source tool** to define potential new DHNs around each sewage treatment plant in the Canton of Zurich
- **Sizing of the DHNs** based on the estimated building annual demand covered by the residual thermal potential of the plants
- Comparison of a simple **radial** approach and a **clustering**-based one to find the consumers to be connected to the heat source
- Sorting the geographical clusters of potential consumers by their estimated **financial revenue**

RESULTS

- 13,077 buildings (6% of the building stock) as potential consumers of DHNs connected to the existing 61 plants in the area.
- Over 20% reduction in pipework length and saving in investments using the clustering approach

in mivestificates asing the crastering approach				Map tiles by Stamen Design, CC BY 3.0		
		Radial approach		Cluster	Cluster approach	
DN	Unitary cost	Length	Cost	Length	Cost	
	(CHF/m)	(km)	(kCHF)	(km)	(kCHF)	
< DN50	1200	364	435670	268	322142	
< DN100	1400	89	125045	69	96902	
< DN200	1900	63	120563	54	102969	
≥ DN200	1900	17	32490	18	33252	
Total		533	713767	409	555265	

CONCLUSIONS AND OUTLOOK

- We developed an **assessment workflow** to identify the potential consumers of DHNs sourced by waste heat and estimate the network length using the DHgeN tool.
- The case-study application has shown a coverage of **6% of the building heat demand**, with a **14% saving** in electricity compared to a base scenario with decentralized air-air heat pumps, and a competitive unitary cost (**0.04 CHF/kWh**) for the infrastructure.
- The method based on open geodata can be extended to other areas in Switzerland.

Giuseppe PERONATO
Idiap Research Institute