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Abstract. Aggregated building energy demand is a useful indicator for urban energy planning.
It can be used by planners and decision-makers to identify clusters of high energy demand in
a given urban area and efficiently plan, for example, district heating networks. Various data
sources exist at the pan-European level describing land use and built areas. Combined with
statistical data, such maps have been used in previous research for estimating building energy
performance aggregated at the hectare level, using engineering assumptions. In this paper, we
show that large-scale land-use maps alone can be used for predicting annual building energy
demand with an accuracy comparable to the one of previous engineering models. We hence
present a preliminary method based on Convolutional Neural Networks at different spatial
resolutions. The resulting model was trained and tested in an area of about 170 km2 in Geneva
(Switzerland) using a local annual heating demand dataset comprising 16239 buildings. On a
300-m aggregation tile, the obtained mean error (14.3%) is significantly reduced compared to
the one of a simple linear model (37.2%). Using solely land-use data, we also achieve similar
results for a 100-m tile as those of an engineering model from the literature.

1. Introduction
The building sector accounted in 2018 for about 36% of the final energy use, which is the largest
share among all end-use sectors [1]. Despite a global slight decrease in the latest years [1], in
2018 the demand for space heating still represented more than 50% of the residential energy
consumption in selected IEA countries [2].

District energy planning is considered a key solution to provide neighborhoods with adequate
low-carbon energy solutions [3], among which we can cite combined heat and power (CHP)
plants, waste-to-energy plants and district heating and cooling networks (DHCNs).

In particular, Möller et al. [4] estimated that 71% of the heat demand in 14 EU Countries
can be provided by District Heating Networks (DHN). Previous works have investigated the
viability of such installations with regard to the heat density in urban areas. Urban areas are
considered suitable for DHN with a heating density starting at 5 GWh/km2 (50 MWh/ha) in
the US, [5], 7 GWh/km2 (70 MWh/ha) in selected EU countries, and 50 MJ/m2 (14 MWh/ha)
in the EU [6]. Even considering the expected decrease of heating demand in future scenarios,
DHN are expected to remain competitive in high heat density areas [7].

Previous research focusing on district heating potential has applied different methods. Geiß
et al. [8] used high-resolution remote sensing and GIS data for a case-study city in Germany
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to assess a number of suitability indicators for DHN to finally derive a energy-return-to-
investment metric, while Gils [9] and Gils et al. [5] used a GIS-based model based on statistical
data for continent-wide evaluations. However, these methods are based on country-specific
features and/or a wide range of statistical datasets. Moreover, validation with measured data
is conducted on closed-access data [8].

This work explores instead the application of machine learning with a single Europe-
wide dataset, in a region of Switzerland where a reliable heating demand dataset is openly
available. Convolutional Neural Networks (CNN) are deep-leaning techniques widely used in
computer-vision tasks such as image classification, detection, segmentation and super-resolution
reconstruction [10], which are common problems in remote-sensing applications [11]. On this
basis, the application of CNNs seems a novel, yet promising application for the mapping of
aggregated building heating demand based on land-use maps.

2. Methodology
The work is conducted in the canton of Geneva (Switzerland). The area has been chosen for the
presence of high-quality open data of the building heating demand, which are needed to train
and test the model. Moreover, this area is particularly interesting due to its varied building
morphology comprising both historical urban fabric and modern settlements.

2.1. Input datasets
Two main datasets have been used in this work:

a) the European Settlement Map (ESM) which is a set of georeferenced raster images mapping
human settlements in Europe, mainly based on SPOT5 and SPOT6 satellite imagery [12]. The
raster maps are composed of 8 classes at a 2.5-m resolution, with each class representing one
land use, including Water, Railways, Green Areas and Built-Up areas. For full land-use classes
description and methodology please refer to [12].

b) the Geneva building performance database (IDC) (Indice de dépense de chaleur, in French)
which provides the weather-normalized annual heating demand at the building level granularity
(expressed in MJ/m2), as well as other building attributes [13, scane indice moyennes 3 ans,
19.12.2020] for multiple years. All tabular attributes are provided as a georeferenced vector
dataset, where the geometry attribute is the footprint of the building. In this work, we used the
heating demand indicator for 2016, as it contained the most records.

ESM provides the model input, i.e., the images used as the model features, while IDC the
labeled dataset with the output variable, i.e., the ground truth used to train, validate and test
the model.

Another dataset has been used to prepare an additional layer (mask) for the ESM images,
that is a raster Boolean mask indicating building footprints that are in BLD but not in IDC:

the Geneva Building Footprint dataset (BLD), which contains the vector geometry of the
building footprints (as well as other information from the cadaster) [13, cad batiment horsol,
19.12.2020]. A shared key allows for join operations with IDC. Figure 2 shows a sample of ESM,
IDC and BLD datasets.

For the comparison with the reference engineering model, we used the following datasets:
Hotmaps Heating Density (HDHotmaps) and Heated Floor Area (FloorAreaHotmaps), which

contain 100-m resolution rasters representing respectively the heating density (MWh/ha) [14,
heat tot curr density ] and the heated floor area (m2/ha) [14, gfa tot curr density ] in 2015.

All datasets are available as open data, from the respective data providers. Instructions on
how to retrieve them and reproduce the experiments are provided in the repository of the project
(http://github.com/enermaps/heatlearn).

http://github.com/enermaps/heatlearn


2.2. Data preparation
All datasets have been tiled to a reference grid, i.e., split into squared images of a fixed size
where the center of each image is the center of each tile. Two main grids have been used in this
work:

a) a regular fishnet grid of 50-m-wide tiles covering the extents of the Geneva Canton. This
grid has been used to train the model with different tile resolutions including 100, 300 and
500-m-wide tiles. At all resolutions, the tiles are centered on the 50-m-wide tiles. This means
that all tiles with a resolution higher than 50 m, as it is the case for all experiments presented
here, are overlapped. Despite parts of the urban fabric being repeated in neighboring tiles,
we consider that each tile is still substantially unique, as the prediction is conducted on the
spatially-aggregated heating demand.

b) A sparse grid where the tile centers correspond to the non-null pixels in the HDHotmaps

datasets [14]. This is used for the comparison with the Hotmaps model.
For the purposes of the model building, we split the samples into training, validation and

testing sets using a 60-20-20% repartition. The training set has been augmented by flipping the
original tiles both vertically and horizontally, hence increasing the dataset by a factor of 4, and
shuffled. All input raster images were normalized to a [0, 1] range.

Since the main datasets (ESM on the one side, and IDC and BLD on the other one) present
several discrepancies notably due to different sources, methods and years of production, the
samples have been filtered to exclude tiles (about 30%) not meeting the following conditions:

• nIDC ≥ 0.40 · nBLD

• (CRESM − CRBLD)/CRBLD ≥ 2

• CRIDC ≥ 0.05

where nIDC is the number of buildings in IDC, nBLD is the number of buildings in BLD and
CR is the coverage ratio calculated as the n of pixels for the built-up class divided by the total
number of pixels in the image.

An analysis of the tiles’ building coverage ratio after the filtering shows that the diversity is
substantially preserved, with the median value only slightly increasing from 42% to 47%.

2.3. Machine learning models
Some simple linear models are tested, using either directly the ESM images or the number
of pixels of each ESM class as input features. The best performing model (a fifth-degree
polynomial regression with Lasso) is then used as one of the two benchmarks model (the other
being presented in 2.4).

We then implemented a Convolutional Neural Network (CNN) that takes images with two
channels (ESM and the mask) as input, pass them through 4 convolutional blocks (with 16,
32, 64 and 64 filters respectively), two hidden layers with 64 neurons each, and a final linear
activation layer to predict a single continuous value. Each convolutional block contains a 2D
convolutional layer, a 2D maxpooling layer and a batch normalization layer. Three models were
trained with this architecture, for 100-m, 300-m and 500-m tiles respectively. In all cases, the
predicted value is the absolute heating demand (from IDC) of the whole input tile.

We finally implemented another CNN (called CNNcontext−aware) with two parallel convolution
sequences, one passing only the central part of the tile (100-m-wide) and another one passing the
entire input tile (300-m-wide). This is meant to predict the heating demand on the 100-m-wide
tile, while using a larger context as input.

For all models, we used the absolute percentage error as the loss function.



2.4. Comparison with the engineering model
In order to be able to compare the results of the models with Hotmaps, the HDHotmapsadjusted
is calculated for each tile t100:

HDHotmapsadjusted = HDHotmaps · HDDcoeff2015 ·
FloorAreaIDC

FloorAreaHotmaps
(1)

where HDHotmaps is the aggregated building heating demand taken from the Hotmaps dataset
for 2015, HDDcoeff2015 is the heating degree day coefficient for 2015 and FloorAreaIDC is the
sum of the heated floor area.

This corresponds to adjusting the originalHDHotmaps dataset for the weather in 2015, i.e.,
obtaining a weather-independent values, and for the building floor area that is actually in IDC,
which is usually smaller because of the missing buildings.

It should be noted that the Hotmaps model [14] is produced with different data sources
(including ESM), unlike our approach solely based on ESM data.

3. Results
Table 1 and Figure 1 summarize the results of all experiments.

The application of the CNN model largely reduces the error compared to the baseline linear
model, with the mean absolute error decreasing from 37% to 13% and a substantial reduction
of the variance.

The study conducted at different tile resolutions shows an improvement with increasing tile
size, with a mean error of 6.6% for a 500-m resolution. This is intuitively due to the larger
context provided to the model that allows for better estimations and to the lower impact of high
errors on single buildings in a larger tile.

The context-aware model shows an improvement over the standard CNN of about 9
percentage points (mean error). Errors up to +581% are still present (see also Figure 2), which
are in line, though, with the ones of the Hotmaps model.

A sample application can be seen in Figure 2, where results intuitively confirm the potential
of a district heating network in dense urban areas such as the one of Geneva.

Table 1: Absolute Percentage Error of the different models and resolutions. The proposed CNN-
based models show significant improvements over the linear model and comparable results with
the Hotmaps model, while with less inputs that the latter. Note that the comparison between
CNNcontext−aware and Hotmaps is conducted on a different test set than the other experiments.

Linear CNN CNN CNN CNNcontext−aware Hotmaps

300 m 100 m 300 m 500 m 100 m 100 m

Median 14.3% 34.7% 9.4% 5.2% 28.1% 15.8%
Mean 37.2% 42.4% 13.4% 6.6% 33.7% 28.4%
STD 122.4% 49.3% 16.1% 6.6% 30.5% 50.9%
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Figure 1: Relative percentage error of the proposed CNN models at various resolutions (a) and
comparison with the reference models (b, c). See note on Table 1.
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Figure 2: Case of the max error (+581%) for the CNNcontext−aware model. In red, the target
100-m tile. The specific industrial depot end-use, difference between raster (a) and vector-based
datasets (b, c) are likely to cause over-prediction.
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Figure 3: Results of prediction on a 300-m grid over in the Canton of Geneva. In red, current
DHNs [13, ctss chauffage conduite, 03.04.2021], background image: SWISSIMAGE25.

4. Discussion
The present work is only a preliminary study on the development of a predictive model for
aggregated building heating demand. Future work should focus on the context-aware model,
which is required to have better performance on 100-m-wide tiles, i.e., the standard resolution
of equivalent models.

Alternative models might be developed based on remote-sensing imagery. However, such



high-resolution datasets are usually available with restricted access, whereas we wanted the
model to be accessible via an open-data platform. The integration in a web mapping platform
is in fact currently under development for the EU-funded EnerMaps project, which will allow
for an intuitive large-scale application of the model.

A model trained on additional datasets similar to IDC would be a valuable resource to
promote the use of the model in other urban contexts and climates.

5. Conclusions
This paper presented a machine-learning method for the prediction of aggregated building
heating demand using solely land-use open-data provided by the European Settlement Map
(ESM). Compared to the reference engineering model, the proposed context-aware CNN has
a comparable level of accuracy in determining the building performance without relying on
statistical data. We have also seen that CNN significantly improves the performance of the
baseline linear model and achieves error rates of about 6% for a 500-m resolution.
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