

Energy Informatics Research Group

A machine-learning model for the prediction of aggregated building heating demand from pan-European land-use maps

G. Peronato¹, R. Boghetti^{1,2}, J.H. Kämpf¹

{giuseppe.peronato,roberto.boghetti,jerome.kaempf}@idiap.ch

¹Idiap Research Institute, Martigny, Switzerland ²EPFL, Lausanne, Switzerland

OBJECTIVES

- Energy heating density predicted on up to 100-m-wide tiles
- A machine-learning model based on land-use maps only
- Training and European-wide deployability based on open data
- Possible applications for district heating network (DHN) potential analysis

METHODOLOGY

- A **convolutional neural network** (CNN) trained and tested on building heating demand (IDC) and cadaster (CAD) datasets for over 16,000 buildings in Geneva area (60-20-20% split) using the European settlement map (ESM) as input
- Comparison with a reference engineering model (Hotmaps) and a baseline linear model
- Spatial aggregation on a fishnet grid (100, 300, 500-m wide tiles) including a 100-m buffer for the context-aware model

$\sum (CAD + IDC)$ 180 -160 -160 -100 80 ESM ESM Fault - Green ndvix Built - Open Space Non-built - Open Space Railways Water CAD + ¬IDC TOC

RESULTS

- Outperformance over baseline (37 to 13% error)
- Greater accuracy with increasing tile resolution, up to 6.6% error for a 500-m resolution
- For a 100-m resolution, improvement of about 9 % points (mean error) using a **context-aware CNN**

		Absolute percentage error		
	Resolution	Median	Mean	STD
CNN	500 m	5.2%	6.6%	6.6%
CNN	300 m	9.4%	13.4%	16.1%
Linear model	300 m	14.3%	37.2%	122.4%
CNN	100 m	34.7%	42.4%	49.3%
CNN context-aware	100 m	28.1%	33.7%	30.5%
Hotmaps	100 m	15.8%	28.4%	50.9%

CONCLUSIONS AND OUTLOOK

- The model reaches similar accuracy as Hotmaps engineering model, but with fewer, more widely available and open-access input data
- **DHN-suitable areas** shown by the model predictions are intuitively located in inner urban areas
- The model is ready to be deployed as an **on-the-fly calculation module** in the EnerMaps web platform

Giuseppe PERONATO
Idiap Research Institute