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Abstract

During recent years, urban building energy modeling has become known as a novel approach for identification,
support and improvement of sustainable urban development initiatives and energy efficiency measures in cities.
Urban building energy models draw the required information from the energy analysis of buildings in the urban
context and suggest options for effective implementation of interventions. The growing interest in urban building
energy models among researchers, urban designers and authorities has led to the development of a diversity of
models and tools, evolving from physical to more advanced hybrid models. By critically analyzing the published
research, this paper incorporates an updated overview of the field of urban building energy modeling and
investigates possibilities, challenges and shortcomings, as well as an outlook for future improvements. The survey
of previous studies identifies technical bottlenecks and legal barriers in access to data, systematic and inherent
uncertainties as well as insufficient resources as the main obstacles. Furthermore, this study suggests that the main
route to further improvements in urban building energy modeling is its integration with other urban models, such
as climate and outdoor comfort models, energy system models and, in particular, mobility models.

Keywords
Urban building energy modeling, Urban energy planning, Bottom-up energy modeling, Building archetype,
Energy simulation, Thermal zoning

Abbreviations
ADE Application domain Extension
BEM Building energy modeling
CDD Cooling degree day
CFD Computational Fluid Dynamic
DEM Digital elevation models
GIS Geographic information system
HDD Heating degree day
HVAC Heating, ventilation and air conditioning system
LiDAR Light detection and ranging
LOD Level of detail
MRT Mean radiant temperature
0GC Open Geospatial Consortium
SRDBM Spatial relational database management systems
UBEM Urban building energy modeling/Urban building energy model
UCM Urban canopy model
UHI Urban heat island

* Corresponding Author
Email Address: fatemeh.johari@angstrom.uu.se (Fatemeh Johari)

1



1 Introduction

The world’s population is currently 7.7 billion, as of January 2019, and more than half of this population resides
in urban areas. Projections show that the urbanization, i.e., the gradual shift from rural to urban residency,
combined with an overall human population growth, will lead to a 50% increase in urban population by 2050 [1].
On the other hand, urban areas are recognized as the main contributors in energy and climatic challenges as they
use more than 70% of the world’s final energy and account for more than 70% of global greenhouse gas (GHG)
emissions [2]. As cities grow and urban activities expand, these values also increase.

In response to the growing rate of urbanization, combined with climate change, urban planning has been adapted
to include sustainable development strategies. Moreover, as cities run on energy, integration of energy planning
with conventional sustainable urban development paradigms is necessary [3], [4]. Integrated urban energy
planning is a complex approach focusing on energy flows into, throughout and out of cities [3], [5]. To understand
the drivers and patterns of the energy flows, the elements of the urban metabolism are analyzed, among which
buildings and their influential roles are well recognized. The building stock has a significant share in energy use
and GHG emissions, and at the same time offers a great potential for energy efficiency and integrated sustainable
energy solutions [2]. The necessity of implementing the urban integrated energy planning on the one hand, and
the key role of buildings in the energy balance of cities, on the other hand, have led to the emergence of novel
city-scale building-oriented studies [6].

In city-scale energy modeling of buildings, the primary approach is to quantify the energy performance of
buildings in an urban context for different spatiotemporal resolutions. Moreover, these models are capable of
being used in further urban planning and development of existing as well as planned areas. Understanding the
diurnal and seasonal energy use patterns for every location in a city gives the authorities a deeper insight into how
to balance the energy supply and demand and prevent from instabilities and shortages in the energy system. These
models also support scenario planning and benchmarking for retrofitting of buildings and integrating renewable
energy solutions in the energy systems of cities. Moreover, planning for and analyzing new city districts will not
be as challenging if the proper models are used. Overall, city-scale energy modeling of buildings offers a suitable
tool for guiding the stakeholders, city planners and decision-makers in understanding urban energy systems and
enables them to formulate energy plans, suggest sustainable initiatives and decide on constructive policies [3],

(71, [8].

1.1  Brief overview of city-scale energy modeling of buildings

Over the last decades, dynamic thermal modeling and simulation of buildings and their energy systems have been
a common approach to planning, demonstration and evaluation of energy conservation measures and thermal
comfort improvement in individual buildings [9]. However, considering the buildings’ interaction with
surrounding buildings and the urban environment [10], [11], their role in renewable resource envelope solutions
[12], and the dynamic influences of buildings’ energy use on district energy systems [13], [14], building energy
studies have been shifting focus from individual buildings to cluster and city-level solutions.

With regard to the hierarchy of input information and the modeling strategy, studies on urban energy flows can
be categorized into top-down and bottom-up models [15]-[17]. Top-down modeling is an approach that relies on
data on an aggregated level to express the relation between energy use and associated drivers such as socio-
econometric variables and climate. Due to the simplicity of the models, their reliance on aggregated historical
data, and their independence on detailed technological descriptions, they have been vastly used in urban energy
studies such as [18], [19]. However, dependence on historical macroeconomic energy trends and lack of
technological detail make these models less suitable to examine changes in technology for current and future
development studies.

Bottom-up models, in contrast, are built up from extensive data on a disaggregated level for estimation of
individual building energy use and extrapolation of the aggregated energy demand. Concerning the level of detail
in the end-use information and the applied methodology, bottom-up models are divided into three categories:
statistical, engineering (physical) and hybrid models. The bottom-up statistical models can represent the relations
of individual end-use energy with buildings’ characteristics and socioeconomic indicators [20]-[22]. On the other
hand, the engineering models make use of physical and technological characteristics of individual buildings to
compute the required energy demand. These models have the highest level of flexibility in evaluating
technological developments and energy efficiency scenarios. Nonetheless, the need for extensive empirical data
and the inherent uncertainties in applied assumptions, particularly for human activities and occupancy profiles,
motivate the use of hybrid models. In the hybrid models, while the buildings are modeled according to their



physical characteristics (just like in the engineering models), the required data, particularly the occupant’s related
data, is obtained from analysis of the historical energy use intensity (as in the statistical models). Thus, the
shortcomings of both models are more likely to be compensated to achieve a more sophisticated model [23]-[26].
In the literature, the method for bottom-up city-scale energy modeling of buildings that includes physical models
of heat and mass transfer in and around buildings are referred to as “urban building energy modeling” [7].

1.2 Previous reviews in the field of city-scale energy modeling of buildings

In terms of city scale-energy modeling of buildings, many review articles have been dedicated to summarizing
and synthesizing different aspects of the field, such as in [15], which presents an audit of regional and national
energy modeling techniques and critically discusses their strengths and weaknesses. This review is one of the very
first studies on detailed characterization and categorization of top-down and bottom-up city-scale energy models
of buildings. Nonetheless, modeling approaches have changed considerably since 2009, when the study was
published, and despite being a valuable resource, this cannot be reflective of the complete field anymore.
Following the same terminology, Kavgic et al. [17] offered a brief overview of top-down and bottom-up models.
The main focus of this review is on elaboration of some selected bottom-up residential stock models and their
applications. Similarly, this review is not up-to-date and also is not inclusive enough.

Keirstead et al. [27] presented a formal definition for urban energy systems, incorporated both processes of
acquiring and using energy and evaluated the main attributes of previous urban energy models, namely,
technology design, building design, urban climate, systems design, and policy assessment. However, what makes
this review different from the others is its approach towards human activity and land use models and evaluation
of their integration into urban energy system models. While in this review a unique approach was used to address
the field, it is more focused on the concepts rather than the technologies and methodologies.

Allegrini et al. [14] paid special attention to energy systems and their interactions with buildings. This viewpoint
led to an inclusive review on models and tools that are used in simulation of energy systems. Moreover, due to
the importance of the interactions between the local microclimate and buildings, the possibilities of modeling
microclimate components were also discussed. Nonetheless, not all of the suggested tools are necessarily capable
of being used in district- or city-scale energy modeling and not all have been used in previous studies. Although
this review justifies the interactions between buildings and the energy systems in districts, no overview of the
building energy modeling is given.

For the first time in the field, Reinhart and Cerezo Davila [7] presented a brief and concise overview of the bottom-
up engineering (physical) methods specifically. They termed the bottom-up engineering modeling as “urban
building energy modeling (UBEM)” which has recently become known and used as a common term in the field.
This review includes the most important aspects of UBEM, yet it is lacking an investigation of future prospects,
approaches and possibilities.

Similar to the work done by Swan and Ugursal [15], Li et al. [16] provided an up-to-date summary of city-scale
energy modeling techniques in the two broad categories of top-down and bottom-up approaches. Despite being
an inclusive review, considering the extent of the field, many notable studies in the area of UBEM were not
included or thoroughly discussed.

While most of the previous reviews have covered the general aspects of city-scale energy modeling, particularly
top-down and bottom-up approaches, others aimed to survey more specific topics of the field, ranging from
occupancy models [28] and microclimate models and their integration with UBEM [29] to the energy-saving
potential in developed models [30].

1.3  Aim of this review

As can be concluded from the previous section, in the context of city-scale energy modeling of buildings and,
specifically, bottom-up engineering (physical) modeling referred to as UBEM, it is necessary to provide a new
literature review that summarizes the previous studies, highlights the research gaps and suggests new horizons for
the field. The goals of this review is therefore to:

e Provide an extensive overview of the bottom-up engineering (physical) modeling known as UBEM.

e Analyze existing studies and outline a methodology for developing urban building energy models
(UBEMs). The main approach is to encompass all different parts of the workflow, in particular those that
have not been extensively discussed before, e.g., building archetypes, databases and visualization.

e Introduce the latest improvements of the field and identify the research gaps.



e Explore models for other parts of the urban environment that interconnect with buildings, e.g., urban
mobility, and try to find a common ground for their integration to UBEM.
e Finally, propose how to bridge the research gaps and suggest what to focus on in future works.

Overall, the novelty of this review is in its objective to survey approaches, opportunities and challenges in UBEM
specifically, and to broaden the horizon for integrated urban building energy models that would include not only
the urban building energy models but also urban mobility models, urban climate models, and the like.

1.4 Outline of the work

This paper is structured in four main sections as follows. In Section 2, urban building energy modeling, state-of-
the-art and best practices are highlighted. However, considering the large extent of the field, this section is divided
into subsections, each introducing one important part of the UBEM methodology from model development and
model simulation to visualization of the results and databases. Section 3 presents the latest developments in other
areas of urban modeling and tries to find a common ground between these models and UBEMs, which could be
potentially used for further improvement of UBEM in future studies. In Section 4, a discussion on findings,
challenges and opportunities, as well as suggestions for further research and development, is included. Finally, in
Section 5, the conclusions from this review is presented.

2 Urban building energy modeling

As in individual building energy modeling (BEM)!, the UBEM procedure is composed of several steps, including
the development of energy models of buildings from their geometric and non-geometric properties and simulation
of the models in a simulation engine. However, the modeling procedure is not as straightforward and is associated
with different challenges and uncertainties. Inferred from the literature and previous studies, an overview of the
modeling procedure in UBEM is illustrated in Figure 1. The modeling procedure for an UBEM starts with
identification of the geometrical properties of buildings, i.e., shape, geometry and geospatial positions, through
3D models of the city (see Section 2.1.1). In addition, non-geometrical properties of buildings, i.e., material,
system and occupancy, are defined by building archetypes that represent the most important characteristics of the
building stock (see Section 2.1.2). Then, together with predefined climatic conditions (see Sections 2.2.1.1), all
the required inputs are imported to an UBEM simulation engine in which the thermal model is initiated and
simulated (see Section 2.2.2). The simulation results for energy demand in cities as well as the input parameters
can be stored in a database and visualized in a suitable application (see Section 2.3).

By listing some of the key properties of the existing models, at the end of this section, some of the most important
UBEM studies with respect to the content of this section are also summarized in Table 4.

! For further details on building energy modeling, the reader is referred to [31].

4



Databases and Data Visualization

(section 2.3)
A il A
A4 : \/  /
Model Development Model Simulation
(section 2.1) (section 2.2)
____________ 1 o, | e | P, |
3D City Model Archetype Development Urban Climate Data UBEM Simulation Engine |
(section 2.1.1) (section 2.1.2) (section 2.2.1) (section2.2.2)
Levelof etai 1 Gessifiotion |1 Weaiher Data Therma odes
O ] | Characterization ! pommooemmoooooo- i Zoning
iLevel of Detail 2 S ] Radiation Models; = | LT
—————————————————— Calibration S Simulation

Figure 1. Overview of Urban Building Energy Modeling.

2.1 Model Development

2.1.1 3D city model

As for BEM, UBEM also requires a description of the geometry of the buildings and their surroundings, which
affects the building energy and thermal performance. The geometry can be further characterized with short- and
long-wave optical properties of surfaces, for example, their solar reflectance. The UBEM accuracy is dependent
on the level of detail and accuracy of the 3D city model, as fundamental parameters are calculated from the
geometry, such as outdoor exposed surfaces and conditioned space, as well as the relation between different
buildings (e.g., two buildings sharing the same wall) and exposition to radiation from the sky, sun and the urban
context.

Energy demand estimation is indeed one typical example of a non-visualization oriented application of 3D city
models [32]. 3D city models are a representation of the different components of the city, in particular of buildings.
3D city models can be obtained with different acquisition methods [32], including, for example, photogrammetry
and laser scanning, e.g., light detection and ranging (LiDAR), or a virtual extrusion of the building footprints.
Table 1 lists the main characteristics of the 3D city model for some sample UBEM application studies.

Most of the studies use standard cadastral information, such as building footprints and height to generate by virtual
extrusion a shoe-box model of buildings, which corresponds to Level of Detail 1 (LOD1) according to the Open
Geospatial Consortium (OGC) classification [33]. Some studies, especially those also targeting solar potential
analysis, provide a more detailed geometrical representation of the buildings, including the actual shape of the
building (LOD?2), or even overhangs, dormers and other architectural details (which we will refer to as LOD2+).
However, it should be noted that the error due to a coarse LOD can be compensated by the use of some data as
non-geometrical attributes of the geometry; for example, the volume of the attic in a gable roof that is not
represented in a LOD1 model can be added to the volume calculated from the shoe-box model. In this sense, the
importance of having LOD higher than LOD1 in UBEM is secondary, as shown by Nouvel et al. [34]. Moreover,



some details present in a LOD3, such as roof overhangs, are not part of the building thermal envelope [35], making
them unsuitable for building energy simulations without specific processing.

If not already included in its semantics, an important component of the 3D city model for UBEM application is
the topological relation between geometrical objects with different thermal properties, such as the contact with
the ground and the walls shared between different thermal zones. Some algorithms have been developed [36],
[37] to solve this type of adjacency problem in UBEM.

In addition to building geometry, the main other components of 3D city models are topography (terrain and
horizon/far-field obstructions) and vegetation. Topography can be easily generated from Digital Elevation Models
(DEM), which are widely accessible in most locations. Vegetation can be reconstructed using LiDAR data or
georeferenced databases providing the characteristics of trees.

For large-scale studies, the 3D city model is usually subdivided in tiles, to be more easily processed by
computational methods. To this end, Romero Rodriguez et al. [38] showed the optimal tile characteristics (size
and overlap) for UBEM and solar potential applications.

Table 1. Characteristics of the 3D city models used in some sample UBEM application studies.

Study Components of 3D city model 2;27;22?% éee‘;fli. lof ;’S:fl::;:a(g; (ieometry
Perez [39] Buildings, terrain, horizon f:;g;::i\;i LODI1 Cadaster

Fonseca et al. [40] Buildings, terrain LODI1 Cadaster

geg]e 70 Davila et al. Buildings LODI Cadaster
eonaopse) Do Shoe - yopa, st
Weiler et al. [41] Buildings, terrain LOD2 3D cadaster

2.1.2  Archetype development

Data collection and model characterization for each individual building in UBEM is difficult, hence abstracting
the building stock into representative archetypes is a useful and often necessary approach. Although most of the
surveyed studies relied on simple archetype development from readily available data and building information
standards, application of machine learning techniques has opened up new horizons to this field, which has resulted
in increased accuracy but also higher complexity of the models. In these approaches, building archetypes are
identified in three main steps. First, the building stock is classified into different groups, according to their similar
characteristics and energy demand. Second, representative building archetypes are characterized. Third, to address
the uncertainties of the used parameters in archetype models, the archetypes are calibrated against measured
energy use data at different spatiotemporal aggregations. These three steps are reviewed in more detail below.

2.1.2.1 Archetype classification

Classification of the building stock into sub-groups of typologically identical buildings and identification of
representative buildings may involve various technical methods. The applied methodologies can be divided into
three main categories:

e  Deterministic Classification

In a deterministic approach, buildings are classified according to their theoretical energy use determined by some
parameters such as use-type, age, shape and floor area. The building use typology (e.g., residential, administrative,
commercial, etc.) presents an approximation to the energy demand profile, and the year of construction or the
effective year (i.e., the year at which the building were under a major refurbishment) can allow a good estimation
of construction materials and systems [36], [42], [43]. In addition to these four parameters, depending on the
availability of data, the type of heating, ventilation and air conditioning systems (HVAC) [44] or the climatic
conditions [45] are often used as other indicators for classification of the archetypes. This categorization of
buildings, using readily available data from public or municipal datasets, e.g., Geograpical information system
(GIS) data, is the most applied method in UBEM studies. However, generic classification of the archetypes using
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the simplified deterministic approach misrepresent the real diversity of the buildings, which may result in
inaccurate energy demand patterns, particularly for higher spatiotemporal resolutions.

e  Probabilistic classification

Another approach in archetype classification is to use historic energy demand data as an auxiliary indicator, by
which categorization of the buildings significantly improves [46]. Statistical identification of the parameters with
the strongest correlation to real energy use intensity can accurately represent the diversity of the energy demand
in different archetypes [46]-[48]. Categorization of the buildings with respect to their actual energy demand can
significantly reduce the uncertainties associated with deterministic classification methods based on theoretical
relations between indicators and energy use. However, availability of measured energy use data and access to
such information are the main challenges in applying the probabilistic approaches.

e  Cluster analysis

Implementation of clustering techniques in archetype classification is a rather novel approach in UBEM [49]. Data
clustering is a well-known data mining method which provides an unsupervised classification of the data
according to their similarities, e.g., patterns, and representative elements [50]. Although the clustering approach
is a new concept in UBEM, they are widely employed by the utility companies to classify the consumers based
on their electricity use profile in order to set specific electricity tariff structures or demand side management
schemes [51], [52]. However, in most of these studies, the buildings’ characteristics are not of importance and the
main norm in classification of the consumers is the profiling information acquired from smart metering. In
classification of the building stock by clustering methods, the building features that influence the thermal behavior
of the buildings are identified and translated into cluster classifiers [49], [S3]-[57]. When the clusters have been
identified, it is possible to select the most representative case as the chosen archetype for the given group. Unlike
in the deterministic or probabilistic methods, in clustering techniques, the membership information is not used as
a prior input; instead, the classification of the buildings results from hidden structures with the thermal energy
demand.

2.1.2.2  Archetype characterization

After classification of the building stock and identification of the archetypes, each reference building has to be
characterized by the non-geometric parameters, including the construction materials, infiltration, HVAC types,
and occupancy profiles. Depending on the availability of data, these parameters are deterministically or
probabilistically defined, as outlined below.

e  Deterministic characterization

In deterministic characterization of the archetypes, depending on the level of granularity, characteristics of the
archetypes are sometimes taken from a “real case”, i.e., one of the buildings of the class. By having access to
building audits and building stock information, actual or averaged values of each parameter are acquired and
assigned to the corresponding archetypes [47]. However, due to the constraints in having access to building-level
data sources, it is less common to conduct a pure deterministic characterization. Thus, building model parameters
are instead compiled from building codes and standards, literature or previous studies. In Europe, under the scope
of a European project known as TABULA [58], one of the most comprehensive residential building typology
information datasets, has been developed for 20 European countries. The results are freely accessible as a web
tool to be used in building-oriented studies. Two other European projects, Odyssee-Mure [59] and Entranze [60],
are other examples of databases that can be applied for European building characterizations.

Despite the functionality of the deterministic characterization of archetypes, to cope with the inherent uncertainties
associated with the input data and the usually limited or non-existent information on occupants-related parameters,
probabilistic approaches are suggested instead.

e  Probabilistic characterization

In building- and energy-oriented studies, probabilistic models of occupants’ presence and action have already
been developed and extensively improved [59]-[61]. The occupants’ behavior is known as one of the main drivers
of energy use in buildings; however, in the field of UBEM, it is still not a well-developed topic. Most of the
previous UBEMs relied on deterministic parameters and schedules for occupants’ behavior [36], [44], [64], while
only a few took the probabilistic evaluation into account [65], [66]. A comprehensive review of the occupancy
models in UBEM is given by Happle et al. [28].



With a wider approach, not only the occupant-related information but also other uncertain characteristics of
buildings (e.g., air change rate, window-to-wall ratio and thermal properties) can be treated stochastically. As in
the studies by Famuyibo et al. [48], Cerezo et al. [46] and Sokol et al. [42], based on deterministic values and
assumptions, empirical distributions of the unsure parameters were obtained from uncertainty modeling
techniques and applied to the model.

However, by analyzing the previous works it is evident that the probabilistic methods have not been completely
introduced to UBEM vyet. As regards the inherent complexity of probabilistic methods and their extensive
computation procedure, they will increase the complexity along with the accuracy of the urban building energy
models. Nonetheless, it is expected that this method will find its position in urban energy modeling as well as in
individual building studies.

2.1.2.3  Archetype calibration

In an attempt to address the uncertainties associated with characterization of the archetypes, and to reduce the
discrepancies between predicted energy demand and actual measurements, calibration methods are needed in
building energy studies [42], [67]-[69]. If the energy use intensity is available, in the simplest method, the
calibration will be an iterative process of adjusting the few uncertain parameters in order to reach a reasonable
approximation to measurements [70]. However, due to the limitations in deterministic characterization of the
archetypes and the growing tendency towards probabilistic parameterization, novel calibration methods focus on
adjusting the results based on probability distributions assigned to each uncertain parameter [71]. Among all
calibration techniques available for BEM [72], in UBEM the Bayesian calibration in capturing the uncertainties
of stochastic parameters was proven to be successful [42], [68], [69], [71].

Booth et al. [71] conducted a Bayesian calibration posterior distribution method to determine the uncertain
parameters and integrated it with a Monte-Carlo model to create a full probabilistic calibration method for
developing a stochastic urban scale domestic energy model. Kristensen et al. [68], [69] developed a multilevel
simultaneous modeling and calibration framework. By means of a set of observed data and Bayesian inference,
the uncertain parameters were calibrated in a hierarchal setting. Cerezo et al. and Sokol et al. [42], [46], [73]
proposed a Bayesian approach based on an iterative process of error analysis between dynamic thermal simulation
and monthly or annually aggregated data.

The archetype development methods in some of the UBEM studies are summarized in Table 2. Note that only the
most representative studies are included in this table.

Table 2. Archetype approach in some sample UBEM studies.

Classification

Study method Characterization Calibration Novelty

Caputo et al. [74] Deterministic Deterministic - -

Sokol et al. [42] Deterministic Deterministic and ~ Iterative Bayesian - Automate calibration of the uncertain

probabilistic calibration techniques parameters.

Famuyibo et al. Probabilistic Probabilistic - - Clustering the building construction

[48] parameters with respect to each other.

Kristensen et al. Deterministic Probabilistic Bayesian calibration - Simultaneous modeling and calibration

[68] techniques (Hierarchical calibration).

Booth et al. [71] Deterministic Probabilistic Bayesian calibration - Prior uncertainty distribution analysis to
techniques form posterior uncertainty models and

calibrated parameters.

Ghiassi and Clustering Deterministic - - Automated building sampling by

Mahdavi [53] multivariate cluster analysis.

Li et al. [55] Clustering Deterministic - - Use of satellite image for clustering




2.2 Model simulation

In BEM, once buildings’ information (geometric and non-geometric) is ready, it is imported to a simulation
engine, in which thermal models are defined and simulated for desired weather conditions. Similarly, in the most
recent UBEM workflows, once the 3D models of buildings and the characteristics of the representative archetypes
are prepared, in an iterative process, the thermal models of buildings are generated automatically and simulated
under certain climatic conditions. As a result, the urban energy demand for different spatiotemporal resolutions
can be extracted from the model. Once properly validated, the model can be reliably used for further urban energy
integrated planning and development studies. A survey of thermal modeling and energy simulation for urban
climate in previous works is included below.

2.2.1 Urban climate data

As in BEM, the UBEM simulation is conducted for a certain weather condition acquired from measurement data.
However, unlike BEM, in most UBEM studies the urban context and its influences on the radiation component of
the urban climate is considered through radiation models. The radiation modeling and shading analysis are usually
conducted by internal calculations or co-simulation with other tools.

2.2.1.1 Weather data

Due to the direct influence of weather conditions on the thermal energy demand of buildings, importing an
appropriate weather dataset to the model is important for the accuracy of the results [75]. In dynamic building
energy modeling, several different weather data sets are commonly used [76]. Typical weather data obtained from
historic measurements (20-30 years) of weather components, referred to as typical meteorological years (TMY3s),
are the predominant climate data used in UBEM [77]. Albeit, there are a few studies which relied on different
sources of data. For example, Buffat et al. [78] focused on the daily mean temperature acquired from the
MeteoSwiss measured on a daily basis and interpolated by measurements of 70 to 110 weather stations. The
radiation data was calculated from the synthetic algorithms of satellite information [78].

2.2.1.2  Radiation models

Estimating the solar radiation reaching the building surfaces is crucial for calculating the energy balance of a
building. In an urban context, solar access is often limited. The exact geometry is also influencing the long-wave
radiation exchanges between different surfaces, which can be calculated with similar methods by some of the
reviewed engines (EnergyPlus and SRA).

We can distinguish between three main methods for solar radiation considering shading (and in some
cases interreflections) from the urban geometry:

e Viewshed analysis
In a raster 2.5D model, the maximum angle of obstruction around the sensor point (i.e., one or more pixels
composing the model) is calculated; this is used to generate a viewshed, i.e. the angular distribution of
sky obstructions, which is subsequently overlaid on the sky and sun contributions. This method, which is common
in GIS-based solar potential analysis, was adapted for applications with vector 3D city models since the first
version of CEA [40].

e Backward raytracing
In a 3D model, rays are cast from selected sensor points on exterior surfaces. If a ray intersects a reflecting surface
(e.g., another building surface), one (specular) or multiple (diffuse) rays are bounced off until reaching either a
fixed maximum number of bounces or the sky/sun. Radiance [79] is an advanced physically-accurate rendering
engine, which is used by Daysim [80] to compute annual simulations. EnergyPlus also includes a backward
raytracing algorithm which supports diffuse and specular materials and one interreflection, using a fixed amount
of rays from the sensor points on the building faces.

e Radiosity
In a 3D model, view factors are calculated for each face of a mesh describing the 3D model, to calculate the
contribution of each of them to the radiant energy balance. This method was first developed in computer
graphics [81]. CitySim and its predecessor SunTool implement a Simplified Radiosity Algorithm (SRA) [82],
[83] which is suitable for predicting short and long-wave radiation on large urban models.
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In Table 3, we display the features of solar radiation simulation engines used in urban building energy
models. Some solar radiation simulation engines are used by multiple tools, and, conversely, some tools allow the
user to choose among different solar radiation engines. Compared to solar radiation studies, the resolution of the
discretization of surfaces in sensor points is low, with usually one sensor point considered per each semantic
surface (e.g., a wall), while EnergyPlus considers one sensor per each vertex of the surface. In viewshed analysis
and backward raytracing the sensor points are independent from the obstructing urban geometry, while
in radiosity algorithms view factors have to be calculated on all mesh faces composing the 3D model. With
regards to the sky model, most engines have implemented state-of-the-art anisotropic sky models such as the Perez
models [84], [85]. All engines include a sample of the actual sun positions, which are usually computed for all
daylight hours only for some representative days. Daysim (in its default daylight coefficient method), for example,
includes 65 direct sun positions for latitudes around 45°, calculated on all full-hour solar times for the 21% day of
each 4" month when the sun is above the horizon.

It is interesting to note that EnergyPlus was conceived as a building energy modeling simulation tool, but it is
currently used also in UBEM. This is particularly due to its flexible parameters with regards to the solar radiation
models, which can be set to include full inter-reflections of external and indoor surfaces. Similarly,
also Daysim was conceived and is still primarily used for climate-based daylight modeling, while it has been
adapted also for urban solar radiation studies and integrated in the later versions of CEA.

Table 3. Features of solar radiation models implemented in common UBEM engines.

Supported Sensor Inter-
Engine PP Wave per Method . Sun positions Sky
tools reflections
surface
Single
EnergyPlus [87], Short- 1 per . . X Hourly, every . .
86] CityBES [88] Long vertex Raytracing diffuse and 18 days Anisotropic [85]
specular
SRA [82], CitySim, Short- I per - Multiple, Hourly, every 145. Tregepza patches;
. . mesh Radiosity . Anisotropic based
[83] SimStadt Long diffuse-only month
face on [84]
Daysim Can be Hourly, every 4 145 Tregenza patches;
[80] CEA Short 1sleste Iray the  Raytracing Multiple months anisotropic [84]
SolarAnalyst CEA Short N/A Viewshed No Half-hourly, 16x16 sectors;
[89] every month Isotropic

2.2.2 UBEM simulation engine

The urban building energy modeling simulation engine is the main core of an UBEM, which takes the
responsibility in translating all the input parameters into mathematical equations, generates the model and
performs the simulation. Here, more details on UBEM simulation engines and their components are included.

2.2.2.1 Thermal models

The thermal behavior of a building can be described by the numerical equations of heat and mass flows inside,
through, and outside of the building envelope, referred to as the thermal model of the building. Thermal
modeling in the field of UBEM is associated with complexity and diversity. However, in terms of modeling
strategy, all the previously developed UBEMs used either of two approaches: some relied on existing computer-
based BEM tools and used them as the main core of their UBEM, while the others developed their own tailor-
made thermal modeling algorithms. These two approaches are described below.

e  Computer-based BEM modeling tools

There no doubt about the maturity of BEM and the application of computational simulation tools in modeling,
analysis and optimization of individual building energy systems [90]. Therefore, one of the most common
approaches in development of UBEM simulation engines is to take full advantage of the already established BEM
tools. However, not every tool is capable of being coupled with the automated UBEM procedure. Among the
available tools, EnergyPlus [86], IDA ICE [91] and TRNSYSS [92], prove to be the most feasible ones in an UBEM
simulation engine [93]. Hong et al. [88] and Reinhart et al. [94] based their models upon the energy simulation in
EnergyPlus, and Nageler et al. [44] developed an UBEM using the co-simulation of IDA ICE for building models,
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TRNSYS for the energy supply units and Dymola/Modelica for district heating networks [44]. However, despite
proven application of such tools in UBEM, most of the studies agree on increased complexity of the model. Thus,
to facilitate the modeling and calculation procedure, simplified methodologies, particularly for shading and
adjacency, are suggested [95]. However, some other studies approached this in a different way and instead
developed their own tailor-made models.

e  Tailor-made thermal modeling algorithms

A tailor-made simulation engine is a refinement of numerical thermal models based on building construction and
material information, as well as losses and gains. In the context of UBEM, modeling techniques based on the
electrical analogy of heat transfer, i.e., resistance and capacitance (R-C), are known for their popularity. Kdmpt
and Robinson [96] conducted a comparative study on their already developed R-C model for a range of building
configurations and concluded on the reliability and applicability of their R-C techniques for large-scale
applications. Accordingly, the urban simulation tool Citysim [64] was developed in the same way. The tool city
energy analyst (CEA), developed by Fonseca and Schlueter [97], was also developed around the R-C network
suggested by the European Committee for Standardization on calculation of heating and cooling load in buildings.
The other common category of tailor-made models rely on minimizing the number of required parameters and
equations of the thermal models of buildings by means of reduction algorithms. These “model reduction methods”
have been used in some of the notable studies. Kim et al. [98] derived a detailed Modelica-based model out of
simplified physical models of buildings. The simplification was conducted in a preprocessing stage using
reduction algorithms. The Citysim [64] precursor, Suntool [65], also applied a reduction method, known as a grey-
box model [26], to develop thermal models of buildings in the urban context.

2.2.2.2  Zoning configuration
In the simplest methodology, the thermal behavior of the building is modeled in one single zone for each building
archetype [24], [65]. Relying on a simple heat balance model for the whole building, the computation time is
considerably reduced in the single-zone models, while the accuracy of the results is adversely affected [99]. As
the single-zone models are unable to completely capture the effects of the urban context and microclimate on the
heat performance of the buildings, and as they fail to represent multi-use buildings, multi-zone thermal models
are suggested instead [95], [100].

In multi-zone models, each building archetype is comprised of several thermal zones. There are different
alternative zoning configurations, some of which follow the ASHRAE 90.1 Appendix G [101] guidelines for
envelope settings and zoning configurations in buildings. Some examples of different multi-zone configurations
are presented and compared by Smith [102]. However, in the context of UBEM, attention is paid mainly to two
alternatives. In the first method, each building includes one thermal zone per each floor, as in [36]. In the other
one [95], as in the ASHRAE guidelines, each floor is divided into five zones: one core zone and four perimeter
zones. Although developing multi-zone models for building archetypes is feasible, in practice, detailed exploration
of the buildings is a trade-off between the complexity of the model and the accuracy of the results. Therefore, for
the sake of simplicity, each uniform-use building can be divided into three sections. The ground floor and the top
floor are modeled explicitly while the intermediate floors are modeled as one floor which is later scaled up to the
whole set of floors after the simulation is done as in [95]. The separation of the buildings in three sections and
using floor or zone multipliers accelerate the simulation process at the same time as it yields accurate results. The
most common zoning configurations in UBEM are illustrated in Figure 2.

Single Zone Building Model Multi-Zone Building Models

Figure 2. Zoning configurations: A. Single-zone model. B1. Multi-zone model, one zone
per each floor and B2. Multi-zone model, five zones per each floor.
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Regardless of the zoning configuration, to obtain the aggregated energy demand of the city, the thermal models
of the buildings can be generated either for the chosen archetypes or for each individual building in the city. If
only the representative archetypes are modeled, the simulation results have to be scaled up. The upscaling of the
results from archetypes to clusters and the whole city is done by means of multiplication factors; for example,
Heiple et al. [70] used the floor weighted area in order to obtain the city-wide energy demand while Caputo et al.
[74] multiplied the results by the number of existing buildings in the identified building groups. On the other hand,
generation of thermal zone models for all the buildings can be done using 3D city models of the whole city [87].
With a 3D building model of the whole city, influences of the urban context and solar radiation on the energy
performance of the buildings can be taken into consideration. However, converting 3D models of a large number
of buildings to thermal models is not a straightforward process, and automated zoning algorithms are required.
With the focus on the auto zoning process, Dogan et al. [100], [103] recommend an automated shoebox model in
creating multi-zone models from the 3D building models. The shoe-box algorithms automatically discretize the
buildings and abstract them into one or several perimeter and core models that are placed in representative
locations within the building. Moreover, the buildings are clustered based on their identical geometries. The
energy model of each shoebox then extrapolated to the whole building. With a different method, Chen and Hong
[95] developed an automatic pixel-based algorithm to divide 2D building polygons into 4 perimeters and a core.
They used the pixels and color codes to separate the indoor space into representative thermal zones.

2.2.2.3  Energy simulation and validation

As discussed in the previous sections, the thermal behavior of a building is described by single or multi-zone
thermal models, and the thermal models are defined by numerical equations of heat and mass transfer through
BEM tools or tailor-made models, referred to as an UBEM simulation engine.

The UBEM engines perform the simulation procedure either using quasi-steady-state methods and calculate the
heat balance over a sufficiently long period (i.e., month or year)[78] [104], or use a dynamic approach and produce
results on short time steps (e.g. hourly) [94]. Although the thermal mass of buildings is ignored in the steady-state
methods, the approximations are good enough to be used for aggregated energy analysis. In dynamic building
energy simulations all energy phenomena in, around and through the building envelope are captured, not only for
annual but also for hourly or even sub-hourly time steps. Accurate calculation of the energy performance of
buildings considerably improves the results compared to the quasi-steady state methods and, consequently, the
increased complexity of the method leads to an incremental rise in computation time. [105]

Most of the previous studies underline the extensive computation time required for dynamic simulation of
UBEMs, but it is noted that only a few have presented the corresponding values. The paper introducing the very
first UBEM tool, known as Suntool [65], is one of the few studies that clearly discussed the calculation time,
including both pre-processing and energy simulation. By conducting a parametric study of the simulation time as
a function of number of buildings and for two building types, it was proven that by increasing the numbers of
buildings by 50%, i.e., from 100 buildings to 200, the simulation time for their tool could increase by roughly
50% for mixed-use buildings (one storey office and six storey apartments) and slightly more than 50% for
residential buildings (two storey detached houses).

As has been mentioned before, to reach a certain level of accuracy while keeping the model complexity down,
alternative strategies were applied by model developers; for example, Chen and Hong [95] made use of floor
multipliers in energy calculation of multi-storey buildings, and Dogan and Reinhart [100] abstracted the thermal
model generation by shoebox algorithms. To evaluate the simplification methods, the simulated energy demand
is normally compared with measured data and validated for different spatiotemporal resolutions.

In UBEM, validation of the results is critical, not only because of simplifications made in the simulation procedure
but also because of the models' dependency on building archetypes in the absence of detailed building stock
information. Abstracting all buildings to a few representative archetypes misrepresents the real diversity of
buildings and usage patterns. Therefore, the reliability of the results and their applicability in sustainable urban
development are highly dependent on validation of the model against aggregated measurement data. In most of
the UBEM workflows, the results were compared with energy use and fuel consumption on an aggregated level.
In [36], hourly and annual results from a UBEM tool were validated against the energy use and fuel consumption
of the city of Boston and showed 5-20% averaged deviations for each zip code. Remmen et al. [66] compared the
simulated results from their developed tool known as TEASER, not only for each archetype and on the building
level, but also for the district level. When comparing the results for the year 2013, they found a 5.6% annual
discrepancy on the district level.
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Table 4. Summary of key properties of some of the notable UBEM studies.

Case study Methodology
Study T Q‘iow&
resolution
Location Archetype Development Simulation core Results and validation
Robinson et al. Olympic Village, Two archetypes use/type. Buildings’ form by Microsoft Developed in Java. 10 minutes of simulation time for ~ Hour
[65] Greece (two-storey detached residential DirectX (rendering engine for Java Four classes of the Model: thermal, 100 single-zone residential
SUNtool building and seven-storey mixed 3D). stochastic, plant and microclimate.  buildings
use apartment). Presentation of the results with Application of grey-box reduction and around 18 minutes for 100
XML files. factor models for thermal multi-zones buildings of mixed
modeling of buildings. use.
Heiple et al. [70] Houston, US 30 archetypes of Use of parcel GIS data. Modeling the prototype buildings 2.5% and -1.3% deviation from Hour
use (residential, commercial), Iterative calibration of individual in DOE-2 in conjunction with disaggregated state energy use
climate (HDD and CDD)', (age), simulation results within 10% of eQUEST. intensity (EUI) for Jan and Aug
and primary heating. measurements. respectively (as examples).
Robinson et al. District of Group of 26 individual shelters Creation of an XML file from the Radiation, thermal, occupancy and  The results were aligned with Hour
[7], Kémpf and Matthéus, Basel, belonging to different years. graphical user interface which plant and equipment modeling. previous evaluations of the
Robinson [8] Switzerland comprises the geometrical and non- Integration of models in one algorithms to propose decent
CitySIM geometrical characterization of the solver. results.
urban scene. Use of R-C network to generate
thermal models of buildings.
Reinhart et al. [94] - - Massing model of the neighbor or Thermal modeling of the multi- - -
UMI city including the buildings, zone buildings in Energy Plus.
vegetation and shading objects by Additional models for daylighting,
CAD modeling platform, outdoor comfort and walkability.
Rhinoceros.
Nouvel et al. Neighborhood of 14000 buildings categorized based 3D model of city from CityGML Quasi-static monthly energy 2% to 31% deviation from actual Month
[104], [107] Ludwigsburg, on different ages and types. (LODI and LOD2). balance (ISO 13790) for consumption (depends on
SimStadt Germany single-zone building models. availability of data).

! Heating degree day (HDD) and cooling degree day (CDD)
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Case study Methodology
Temporal
Study resolution
Location Archetype Development Simulation Core Results and Validation
Tuominen etal.  Finland 12 use/type/age. Excel-based tool to calculate and - Dynamic energy simulation of National energy analysis and Year
[108] Detached houses, apartments, accumulate the thermal energy archetype in IDA ICE. future development scenarios.
REMA model commercial buildings and holiday =~ demand based on building - Cumulative energy calculation in the
homes. archetypes. model separately.
Reiderer et al. - - - - Implementation of single zone and Validation according to Hour
[109] and Perez multi-zone R-C thermal models in ASHRAE guideline 140. (minute is
etal. [110] MATLAB. 45.6 seconds computation time ~ possible )
DIMOSIM - Integration with stochastic for 700 simple thermal
occupancy models and solar masks, modeling.
local and central energy generators
and thermal distribution system.
Cerezo et al. Boston, US 83541 buildings. Combination of building footprint - Auto generation of multi zone 5% to 20% discrepancy in Hour
[36] 52 use/age. and GIS database to create massing thermal models by UMI tool. average EUL
Including all building types. models of buildings.
Fonseca et al. City of Zug, 1392 buildings. Developed in Python and built as - Hybrid model including statistical The annual energy service error  Hour
[97], [111] Switzerland 172 use/age/active year. extension of ArcGIS. analysis of annual regional energy reported as 1% to 19% on
CEA Four-dimensional visualization. data district-level,
Variables grouped in 5 databases. - Physical computation of hourly while calculated as 4% to 66%
energy demand from R-C models on building level.
according to European committee for
standardization (CEN) guidelines.
Buffat et al. St.Gallen 1845 +120 buildings Massing models from building - Space heat demand model derived Median simulated heat demand 30 min

[78]

and alpine village
called Zernez,
Switzerland

21 use/age.
Only residential buildings.

footprints of cadastral surveys
combined with GIS datasets and
novel digital elevation model from
LiDAR point clouds.

from SIA 380/1 norm.

deviated less from measured
data in multi-family houses and
mixed residential buildings
than in single-family houses
(over-estimated). Existence of
some systematic errors.
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Case study Methodology
Temporal
Study resolution
Location Archetype Development Simulation Core Results and Validation
Hong et al. [88]  Downtown San 540 small and medium-sized CityGML data sets processed to - Pixel-based auto zoning algorithm Pattern-based calibration -
and Chen et al. Francisco, US offices and retail buildings + 1087 determine the shading/adjacent targeting the ASHREA multi-zone approach.
[112] shading buildings. buildings as well as weather file buildings. 10 minutes simulation time is
CityBES for each building. - EnergyPlus integrated with Open required for annual simulation
studio development kit. with 5 minutes time step.
- Integrated energy conservation
measures scenarios.
Nageler et al Semi-virtual case 1561 buildings and a new Existing building geometry - Co-simulation platform (BCVTB) Computational time 2 houtr per 15 minutes
[44], [113] study of Graz development area acquired from integration of framework of IDA ICE for model.
West, Austria in 18 sub-districts and 83 buildings  buildings’ ground plan from GIS buildings’ models, TRNSYS for Validation of model for 4 types of
per model. and buildings’ height from laser energy supply unit and buildings in the case study: the
scanning data. Dymola/Modelica for district heating  existing buildings, the
A plus shaped replacement network. replacement cubature derived
cubature with 75 m length and the - Identification of thermal zones from the framework plan,
derived height from framework according to building use and up to buildings under planning, and
plans and glazing ratio of 0.35% three zones for existing buildings. buildings not yet planned.
Remmen et al. Belgium 24 buildings with 8 different types ~ Building characterization from - Development of the Reduced The simulation methodology -
[66] Germany (year/use). CityGML and German building Thermal Network model by almost agreed with the
TEASER Bad Godesberg, 200 buildings (offices and stock datasets Modelica AixLib and IEA-EBC calculation of the annual heat
Bonn, Germany laboratories). Annex 60 library. demand (only 5.6% discrepancy
Urban scale with 2897 residential reported) for the case of future
and office buildings. developments scenarios for the
neighborhood.
Wang et al. Urban and sub- 227+ 100 + 114 multi- and single ~ 2.5D GeoData of Swiss buildings - Automated building-by-building Accurate heating demand Hour
[114] urban parts of family houses. processed in ArcGIS. energy modeling in EnergyPlus. calculation at district level (-1%
CESAR Ziirich 7 age groups. - Accounting for multi-zone buildings  deviation with annual

and
village of Zernez,
Switzerland

and shading buildings.
Retrofitting models for 5 periods to
the year 2050.

measurements)
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2.3 Databases and data visualization
UBEM is usually based on large datasets with a high resolution both spatially and temporally, containing, for
example, high-resolution 3D geometry and extensive time series of simulated energy values. For this reason,
different computationally efficient solutions to manage these data are needed, including storage, processing and
visualization. In terms of data storage, there are both relational databases and file-based systems. Data
interoperability between the different stakeholders using UBEM is also a crucial functionality for which
standardized formats and platforms have been developed. [115]
The most popular data format is based on the Open Geospatial Consortium (OGC) standard CityGML. The only
alternative format, INSPIRE, partially based on CityGML, is conceived for a larger granularity and is less flexible
with regards to energy applications [35]. CityGML is an XML-based structure designed to describe complex urban
geometries such as the one presented in Section 2.1.1. CityGML can be seen as the city-scale counterpart of
Building Information Modeling (BIM) formats such as IFC and gbXML and some works focus, in fact, on lossless
conversion between these formats, e.g., from IFC to CityGML [116].
CityGML presents several Application Domain Extensions (ADEs) that are used to enrich the 3D city model and
to model user-defined objects and attributes [117]. According to the review by Biljecki et al. [117], three ADEs
have been used in UBEM applications, two of them being designed more specifically for energy efficiency
projects. The Energy ADE developed by Agugiaro et al. [115] is a comprehensive ADE that targets many energy
applications in buildings. It can be considered the city-scale equivalent of the BIM format gbXML, which was
conceived to share information between building energy models. It should be noted that the CityGML Energy
ADE is intended to describe the building physics, occupant behavior, construction and materials, and energy
systems parameters to be used in building performance simulation but also for storing the calculated energy
demand values. It is complementary to the Utility Network ADE [118], which was developed to describe energy
networks between buildings.
In order to overcome the limitations of file-based databases, which are unsuitable for large 3D city models,
3DCityDB [119] provides an importer from CityGML to spatial relational database management systems
(SRDBMSs) such as ORACLE Spatial and PostgreSQL/PostGIS. SRDBMS systems are supported by most GIS
systems and other ETL (Extract, Transform, Load) tools. At the current development status, 3DCityDB does not
support generic ADEs. However, the Energy ADE has a database implementation that is compatible with
3DCityDB.
3D city models have many visualization-oriented applications [32]. Despite the fact that the analysis of energy
potential is not linked with the visualization features, the results are often communicated through the use of
interactive 3D interfaces. For these reasons, 3DCityDB exports the 3D city model in some typical visualization-
oriented formats such as KML and Collada. It is also integrated with CesiumJS [120], a popular Virtual Globe
Platform that allows web-based visualization and interaction with 3D city models. Other tools use GIS-embedded
3D visualization capabilities [40] or rely on KML files to exchange information with other popular 3D mapping
tools such as GoogleEarth [37].
Overall, we can distinguish between two main visualization strategies for the results of UBEM:

e False-color visualization of the 3D geometry, in which the color usually indicates the building energy

demand or other energy-related indicators as, e.g., in [104].
e  Heat maps showing the spatial distribution of the energy demand across a city by resampling the data to
a grid as, e.g., in [36], [37].

It should be noted that the two strategies above can be implemented in either 3D or 2D, but the 3D version does
not substantially improve the communication of the results compared to the 2D one, unless a finer spatial
granularity than whole buildings is implemented (e.g., heating demand for each floor).
We can also consider UBEMs that target more specifically the neighborhood scale and urban design applications.
In this case, some works have focused on visualization solutions oriented to computer graphics and 3D modeling,
such as Rhinoceros. This is the case of the UMI tool [94], but also the City Energy Analyst (CEA) [111] is
developing support for this interface in order to bridge the gap between UBEM and urban/building designers. In
Table 5 the data management and visualization solutions of some notable UBEM studies are presented.
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Table 5. Data management and visualization solutions of some notable UBEM studies.

Tool/study Platform Format Data format(s) Visualization
[C366r]ezo Davila et al. Rhinoceros Database, File N/A N/A
Peronato [37] Rhinoceros File Tabular text, KML GoogleEarth
Fonseca et al. [40] ArcGIS File SHP files ArcScene

Relational database

Weiler et al. [41] (3DCityDB)

CityGML CesiumJS

3 Future prospects of UBEM

In the context of UBEM, buildings play a central role in the final energy demand estimations. However, buildings
are not the only contributors; other elements of the urban environment, such as urban climate and urban energy
systems, can influence the urban energy demand or be influenced by it. Although these urban models have not
escaped the attention of the model developers, not all the UBEMs have incorporated them. Thus, in this section,
an overview of these models and their potential integration with UBEM is provided.

3.1 Integration with urban climate models

The urban landscape and activities create a local climate different from the surrounding rural environment. The
ambient temperature in cities is higher, a phenomenon referred to as the urban heat island (UHI) effect, which is
due to a set of features; the local wind pattern is disturbed by the thermophysical and geometrical characteristics
of the buildings, and solar radiation is reduced as a result of the decreased sky view factor caused by buildings
and other obstacles [121]. The results of previous studies prove that the thermal energy performance of buildings
is strongly contingent upon the urban climate and the surrounding environment [122]. Therefore, to accurately
evaluate the heating and cooling demand of buildings, possible integration of urban climate models with UBEM
has received increased attention in recent years. The urban climate can be modeled on different spatial scales,
from mesoscale to micro-scale.

Meso-scale meteorological models are weather forecasting methods that are combined with urban parametrization
to predict the urban climate at high resolutions (around 0.2 -1 km) [123]. Parametrization is the process by which
the important physical schemes that cannot be captured directly by the forecasting methods are determined for
different spatial resolutions. The model resolution refers to the horizontal and vertical scales, which can be
resolved by the numerical models for the area of interest [124]. Urban parameterization studies are divided into
three main categories; slab models and two types of urban canopy models (UCMs), single-layer and multi-layer
UCMs. In slab models, the thermal effect of the city on the atmosphere is determined using the modified heat
capacity, thermal conductivity, surface albedo, roughness length and moisture availability for the urban surfaces
and calculating the vertical energy and momentum flux to the atmosphere. UCMs use climatic parameters such
as radiation, heat, moisture and momentum to estimate the energy flux from 3-dimensional urban surfaces such
as walls, roofs and roads, to the atmosphere. The main difference between single and multi-layer UCMs lies in
the representation of the vertical structure. In single-layer UCMs, the energy flux is averaged over the building
height, while in multi-layer UCMs it is obtained from many sub-layers, which leads to higher resolution as well
as higher complexity in the model. Due to the relatively complete scheme, UCMs are the most commonly applied
models for simple energy modeling, particularly for simulation of UHI effects. [124]-[127]

However, due to the large spatial resolution of the mesoscale models, they are unable to capture the heat and fluid
dynamics in and around buildings. Moreover, the mesoscale models are complex to develop and expensive to
compute. Thus, for a detailed model at meter-scale resolution, the micro-scale urban climate models, referred to
as microclimate models, have been introduced [11], [128].

The microclimate models encompass different concepts to determine the interdependence of buildings and the
urban local climate. The main principle is to use the climatic components such as ambient temperature, humidity,
and local wind, as well as the solar and longwave radiation, and the buildings’ form and texture, to evaluate the
local climate and the thermal behavior within the building blocks [11], [129]. At the building level, the knowledge
about microclimate modeling is broad and suggested methods are proven as in the tools SOLENE-microclimate
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[130], and UMsim [129]. However, at city-level modeling, complexity of the urban structure and calculation of
the ground and surface temperature pose challenges to the modeling procedure [29], [129]. To cope with these,
different approaches in integral modeling of microclimatic components such as radiation and convection have
been assessed. As discussed in Section 2.2.1.2, estimation of the radiation component of the microclimate in
UBEM is attainable. The convective heat transfer, on the other hand, is a component of local air temperature and
urban wind profile, which are normally estimated by the flow models. In most urban microclimate models, the
flow models are resolved by computational fluid dynamic (CFD) methods [131], which are capable of being
integrated into the BEM studies. However, due to the inherent complexity of CFD, they are not considered as a
promising option for inclusion in UBEM. Therefore, the number of UBEM studies considering integration of CFD
with city-scale building models is negligible, and most of previous workflows ignored its influences on building
energy performance.

3.2 Integration with urban energy system models

As has been discussed, buildings are the main components of urban energy studies, and their influence on urban
energy flows is both on the demand and production, i.c., in the case of on-site generation of heat and electricity.
When evaluating the energy performance of buildings on the urban-scale it is also important to consider which
impacts their consumption and generation patterns have on the energy infrastructure that they are connected to.
Extending the analysis of urban energy systems beyond the buildings requires including models of local energy
utilities and energy distribution systems. District/urban energy system models is a well-developed field and the
number of articles published in this area is considerable. Some of the available approaches, methods and tools for
district-scale energy system modeling were summarized in a literature study by Allergrini et al. [14].

A more comprehensive definition of urban energy system models has been provided in recent research. There, an
urban energy system is defined as “a formal system that represents the combined process of acquiring and using
energy to satisfy the energy service demands of a given urban area” [27]. Most of the UBEMs developed so far
are limited to the demand-side. However, some UBEMs could be recognized as urban energy system models
according to the definition above, including not only the buildings but also other parts of the energy systems, such
as generation and distribution systems. CitySim [64] integrated the calculations on HVAC systems with the district
energy conversion system (ECS), comprised of different technologies of generating and storing heat and
electricity to meet the buildings’ needs. For the sake of simplicity, these technologies were modeled based on
performance curves with unlimited capacity in providing the energy. Nageler et al. [44] integrated the UBEM
with two other models, one for distribution systems modeled in Dymola/Modelica and one for the energy supply
units in TRNSY'S, using the co-simulation interface for running simulations simultaneously in these software.
Of all the surveyed models, CEA [111] provides the most far-reaching combination of a UBEM with urban energy
models. The model consists of several modules. A demand module includes the building energy simulations and
determines the end-use heating, cooling and electricity demand, and a supply system optimization module includes
thermal networks and optimized distribution systems. Additionally, alternative energy technologies are modeled
in another module including techno-economic models of several production, storage and distribution units. This
allows CEA to be used for optimization and analysis of complete urban energy systems.

3.3 Integration with thermal comfort models

Thermal comfort of building occupants is the main factor influencing energy demand in buildings, yet it has been
given little consideration in UBEM studies. Braulio-Gonzalo et al. [132] included the assessment of discomfort
hours, while these were calculated on the archetypes and later extrapolated at the larger scale through statistical
modeling. Some engineering bottom-up UBEM studies mention the use of set-points for indoor air temperature
[40], [87] and moisture content [40] to control the simulated HVAC system. The application of comfort models
controlling, for example, the operative temperature or the evaluation of discomfort situations in engineering-
modeled buildings seem in general not appropriate for the level of detail of engineering bottom-up models, in
particular, due to the limited information regarding radiant sources and airflow for indoor spaces.

Nevertheless, UBEM opens new perspectives on simulation of thermal comfort and heat stress in outdoor spaces.
Extensive literature reviews have been conducted in the field, in particular on the models for outdoor thermal
comfort [133], [134]. The Universal Thermal Climate Index (UTCI) [135] is one of the most recent outdoor
comfort models and has been applied to all climates [134].

The growing interest in outdoor comfort is not limited to hot climates, but also in cities at temperate climates
suffering from the Urban Heat Island effect [136] or evaluation of discomfort due to cold [137]. Moreover, outdoor
comfort is one of the factors influencing outdoor activities [133], even if it was shown that in some cases people
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tend to voluntarily choose uncomfortable situations, such as sunlight in a park [138]. More specifically, the
willingness to walk or cycle is mentioned as influenced by favorable outdoor comfort conditions [137], [139],
[140].

Some UBEM tools or their simulation engines are used as support for outdoor comfort studies and have therefore
a double application potential. Naboni et al. [141] present a review of tools used for predicting the Mean Radiant
Temperature (MRT) applied at the urban scale, some of which are based on UBEM simulation engines, such as
CitySim and EnergyPlus. A comparison between the features of the two engines can be found in a work by Miller
et al. [142]. Input parameters for MRT models such as wind speed, airspeed, relative humidity, long- and short
solar radiation are also needed for (urban) building energy modeling. Moreover, long-wave radiation emitted by
buildings should be also included in the energy balance for MRT, whence the possible synergies between UBEM
and outdoor comfort studies.

3.4 Integration with urban mobility models

The human-related effects on energy consumption in buildings has been one of the most studied topics in recent
years. There are different models developed for occupants’ presence and action on building-level as in [61], [62]
to present close-to-reality estimations on occupants-related energy demand. However, only a few studies are
accounting for the urban-level occupants’ behavior in buildings. For example, in a recent study done by
Mohammadi and Tylor [143], the spatial impacts of human behavior on the energy demand of buildings were
evaluated using predictions on human mobility and urban mobility-based models. To predict the spatiotemporal
dependencies between human mobility and energy demand in buildings, positional records of the individuals and
the residential electricity use were analyzed over a course month for the city of Chicago. As a result, they
developed a multivariate autoregressive model to predict the monthly electricity consumption with respect to the
urban-level human behavior. Focusing on this dependency, Robinson et al. [64], developed an activity-based tool
based on spatial information on individual transportation and integrated that to their UBEM, CitySim, as a pre-
processing step. This mobility tool, known as MATSim-T, was designed to exchange the results on arrival and
departure time of occupants with the main model and alter the occupancy model accordingly. Thus, considering
the proven correlations between human mobility patterns with energy demand in buildings and possible
integration of UBEM with mobility models, the urban mobility models are further discussed here.

Mobility is the principal part of the ‘urban metabolism’ [144], which relates to the movement of people in the
urban areas. In general, mobility models can be recognized by two scales, namely, individual motilities and
general population flows [145]. Individual mobility models taking a certain level of uncertainty into account
regarding the freedom of action in individuals leading to a degree of randomness in the patterns of travel.
Nevertheless, several studies have shown that individual paths are far from randomness while individual activities
have more discipline and easier to predict, which can be used to predict individual motilities. Application of
individual mobility models have been widely studied and used in geography, transport and urban planning [146],
[147].

The population level models can be categorized into four main groups including gravity models, intervening
opportunities models, radiation model, and transportation models. Gravity models are commonly used
mathematical model for predicting interplay between two or more locations to estimate the flows, the independent
factors for prediction of population, communication size, amount of citation, and distance [148]-[150]. The
gravity model mainly used many types of mobility network such as shipments [151] highway [152]
travelers[153]-[155].

The first intervening opportunities model was introduced by Stouffer [156]. He prepared a conceptual and formal
model for human mobility and asserted that the number of cumulative between the origin and the destination is
the key point in migration. The model is used to estimate the migration patterns between services and residences.
The extended radiation model applies a conditional probability approach to accomplish a trip between two separate
locations by considering the spatial distribution of opportunities. In the original version of the radiation model,
the number of opportunities is approximated by the population, but the total inflows to each destination can be
used too [155]-[157]. The main advantage of the radiation model compared with other spatial interaction models
is the absence of a parameter to calibrate the observed data. However, this advantage limits the model to be robust
against the possible changes in the spatial scale [155]-[158]. To overcome this drawback, a radiation model with
opportunities’ selection [159] as well as an extended radiation model [160] have been proposed. In the extended
version, according to the spatial distribution of opportunities, the conditional probability to perform a trip between
two locations is ensue from the survival analysis framework. The number of chances is approximated by crowd
in the based prescription of the radiation model while the total number of internal flows to each final location can
be used [155]-[157]. The privilege of this model to another one is the lack of using a parameter to calibrate the
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observed data. Furthermore, this privilege demonstrates a restriction on the model to be not sturdy enough against
the shift in the spatial scale [155]-[158].

As discussed, temporal fluctuations of energy demand in buildings are driven by human activities and spatial
mobility patterns. On the other hand, the urban-level human behavior is possible to predict using human mobility
models. Thus, possible integration of urban mobility models with UBEMs for predicting the urban occupancies
and also net-zero transportation, e.g., electric vehicle charging, is one of the main opportunities for improving
urban energy studies.

4 Discussion and suggestions for further research

The review of the state-of-the-art shows that the research on urban building energy modeling is still growing in
volume. Although the hybrid modeling raises the possibilities and facilitates the shortcomings of only engineering
(physical) models, based on the survey of previous research, it is argued that there are still some noticeable gaps
in hybrid UBEM that have to be further studied:

e Archetype development using data mining and machine learning techniques,

As mentioned previously, archetype development is one of the biggest challenges in UBEM. There is a great
deal of uncertainty about the building stock due to, i.e., lack of availability of good quality data, which makes
it hard to proceed with building archetypes. On the other hand, abstracting all the buildings of a city in a few
classes, and sampling the characteristics of each class in one building archetype may not cover the diversity
of buildings. Even though various known models have used a deterministic classification of the buildings,
the results show a large deviation from measurement data. This underlines that the sampling criteria in
deterministic methods are not inclusive enough, particularly when occupants’ behavior is discussed. The
probabilistic nature of the occupancy and energy use in the buildings, as well as the uncertainty in archetype
development have sparked a discussion on the importance of data-analysis in UBEM and hybrid modeling.
As was presented, some of the most recent studies used supervised and unsupervised machine learning
techniques in developing building archetypes. Yet, no proven method has been established. However, most
of these studies agree on iterative calibration of the archetypes by Bayesian statistics. This means that
although the calibration methods are more generalized, there is still a need for further improvement of the
archetype development process, particularly in classification and characterization methodologies. Machine
learning algorithms are one of the promising approaches to this, even though their accuracy depends on
extensive and high-quality sample data, which is hard to access.

e Improved computing power,

Most advancements in the area of UBEM are found in the process of thermal modeling and energy simulation
of buildings. By taking full advantage of tailor-made algorithms of heat and mass transfer or using
commercial energy simulation software as the core in the UBEM simulation engines, accurate energy
calculations can be done. However, computation time is one of the greatest obstacles for large-scale energy
simulation of buildings. To overcome this issue, different studies applied various approaches, ranging from
very simple methods of upscaling results from archetypes to the whole city by means of multiplication factors,
to advanced shoebox algorithms and building clustering for speeding up the building-by-building energy
modeling. Parallel computing and cloud computing are the other alternatives in accelerating the energy
simulation procedure. Improved computing power offers the possibility of faster simulation even for more
complex models.

e  Model validation,

While most of the studies present no estimation on the required computation time, others lack in validating
their models against measurement data. As regards the level of uncertainty associated with modeling and
simplification techniques, reliability of the UBEMs is strongly connected with validation of results. As not
all the previous models were validated, their validity is difficult to judge.

Apart from the advancements in UBEM, the main future prospect of UBEM is deemed to be in integrated
modeling and integration of the models with other urban models:
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e Integration of UBEM with urban microclimate models,

As regards the direct influence of urban climate on the energy performance of buildings, association of UBEM
with microclimate models was frequently argued for in previous works. Radiative exchange from and
between buildings is a valuable piece of information that UBEM can provide to microclimate models that can
be used, for example, for outdoor comfort studies. It can be argued that these already give a good
understanding of the microclimate in many urban situations with reduced wind flow, while the greatest
constraint is on outdoor wind flow models and their integration to (U)BEM studies. Despite the maturity of
the field of CFD and its proven application in calculation of the energy and mass flows around the buildings,
their complexity is a challenge. This leads to low scalability from building to district and city scale. However,
by increasing the computation power and developing alternative microclimate models, the chance of
integration of UBEM with full microclimate models is improved. Thus, urban climate models and their
possible integration to UBEM should be surveyed.

e  Urban occupancy and integration of UBEM with urban mobility models,

While most of the UBEMs have focused on the physical drivers of the urban energy flux, occupant-driven
factors have been given less consideration. Realistic modeling of human activity on the building level is
achieved through existing deterministic and stochastic models. Nonetheless, as for BEM, these models are
not fully capable of being used in urban studies; hence, there is a need for occupancy models to be developed
in urban occupancy models. Urban mobility models essentially account for human activities in both space
and time. Although these models have been traditionally incorporated in urban transport planning, their
integration into UBEM would potentially improve modeling of occupants’ behavior (presence and activity)
in buildings. Compared to the urban climate models, urban mobility models related to UBEMs have barely
been discussed and except few, e.g., [27] and [64], no other practical result is found in the literature. Thus,
given the importance of filling the research gap, the integration of the urban mobility models with UBEMs
cannot be overlooked.

5 Conclusion

During the last decade, a large body of research has been conducted in the field of bottom-up engineering
(physical) energy modeling of buildings known as urban building energy modeling. These models detail buildings
and their energy systems to determine energy flows throughout cities and can be used for energy planning and
city development. However, the survey of the state-of-the-art studies proves that these models cannot capture the
variations in building physics as well as occupants’ behavior in all their complexities and, thus, the modeling
procedure needs to be combined with data-driven and probabilistic methods. Developed out of advantages of both
engineering and statistical approaches, such hybrid models are considered to be promising methods in future
UBEMs. Yet, no model is accurate unless it properly outlines the model uncertainties, calibrates the uncertain
parameters, and validates the simulation results against measured data. While calibration techniques have found
their way into UBEM, particularly in archetype development, most of the existing models are lacking in validation
procedures.

Besides hybrid modeling, this review underlines the future significance of UBEM in integrated modeling, i.e.,
integration of UBEM with urban models such as climate, energy systems, thermal comfort and particularly with
mobility models. While some of these models have been considered for further development and integration with
UBEMs, almost no published research considers integration of spatiotemporal human activity patterns through
urban mobility models, despite their importance for occupancy patterns in buildings. Thus, this review strongly
emphasizes the necessity of integration of UBEM with urban mobility modeling to advance occupancy modeling
and associated uncertainties in city-scale energy analysis of buildings.
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