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Abstract 
During recent years, urban building energy modeling has become known as a novel approach for identification, 
support and improvement of sustainable urban development initiatives and energy efficiency measures in cities. 
Urban building energy models draw the required information from the energy analysis of buildings in the urban 
context and suggest options for effective implementation of interventions. The growing interest in urban building 
energy models among researchers, urban designers and authorities has led to the development of a diversity of 
models and tools, evolving from physical to more advanced hybrid models. By critically analyzing the published 
research, this paper incorporates an updated overview of the field of urban building energy modeling and 
investigates possibilities, challenges and shortcomings, as well as an outlook for future improvements. The survey 
of previous studies identifies technical bottlenecks and legal barriers in access to data, systematic and inherent 
uncertainties as well as insufficient resources as the main obstacles. Furthermore, this study suggests that the main 
route to further improvements in urban building energy modeling is its integration with other urban models, such 
as climate and outdoor comfort models, energy system models and, in particular, mobility models. 
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BEM Building energy modeling 
CDD Cooling degree day 
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1 Introduction 
The ZoUld¶V SoSXlaWion iV cXUUenWl\ 7.7 billion, aV of JanXaU\ 2019, and moUe Whan half of WhiV SoSXlaWion UeVideV 
in urban areas.  Projections show that the urbanization, i.e., the gradual shift from rural to urban residency, 
combined with an overall human population growth, will lead to a 50% increase in urban population by 2050 [1]. 
On the other hand, urban areas are recognized as the main contributors in energy and climatic challenges as they 
XVe moUe Whan 70% of Whe ZoUld¶V final eneUg\ and accoXnW foU moUe Whan 70% of global gUeenhoXVe gaV (GHG) 
emissions [2]. As cities grow and urban activities expand, these values also increase.  
In response to the growing rate of urbanization, combined with climate change, urban planning has been adapted 
to include sustainable development strategies. Moreover, as cities run on energy, integration of energy planning 
with conventional sustainable urban development paradigms is necessary [3], [4]. Integrated urban energy 
planning is a complex approach focusing on energy flows into, throughout and out of cities [3], [5]. To understand 
the drivers and patterns of the energy flows, the elements of the urban metabolism are analyzed, among which 
buildings and their influential roles are well recognized. The building stock has a significant share in energy use 
and GHG emissions, and at the same time offers a great potential for energy efficiency and integrated sustainable 
energy solutions [2]. The necessity of implementing the urban integrated energy planning on the one hand, and 
the key role of buildings in the energy balance of cities, on the other hand, have led to the emergence of novel 
city-scale building-oriented studies [6].  
In city-scale energy modeling of buildings, the primary approach is to quantify the energy performance of 
buildings in an urban context for different spatiotemporal resolutions. Moreover, these models are capable of 
being used in further urban planning and development of existing as well as planned areas. Understanding the 
diurnal and seasonal energy use patterns for every location in a city gives the authorities a deeper insight into how 
to balance the energy supply and demand and prevent from instabilities and shortages in the energy system. These 
models also support scenario planning and benchmarking for retrofitting of buildings and integrating renewable 
energy solutions in the energy systems of cities. Moreover, planning for and analyzing new city districts will not 
be as challenging if the proper models are used. Overall, city-scale energy modeling of buildings offers a suitable 
tool for guiding the stakeholders, city planners and decision-makers in understanding urban energy systems and 
enables them to formulate energy plans, suggest sustainable initiatives and decide on constructive policies [3], 
[7], [8]. 
 

 
1.1 Brief overview of city-scale energy modeling of buildings 
Over the last decades, dynamic thermal modeling and simulation of buildings and their energy systems have been 
a common approach to planning, demonstration and evaluation of energy conservation measures and thermal 
comfort improvement in individual buildings [9]. HoZeYeU, conVideUing Whe bXildingV¶ inWeUacWion ZiWh 
surrounding buildings and the urban environment [10], [11], their role in renewable resource envelope solutions 
[12], and Whe d\namic inflXenceV of bXildingV¶ eneUg\ XVe on diVWUicW eneUg\ V\VWemV [13], [14], building energy 
studies have been shifting focus from individual buildings to cluster and city-level solutions. 
With regard to the hierarchy of input information and the modeling strategy, studies on urban energy flows can 
be categorized into top-down and bottom-up models [15]±[17]. Top-down modeling is an approach that relies on 
data on an aggregated level to express the relation between energy use and associated drivers such as socio-
econometric variables and climate. Due to the simplicity of the models, their reliance on aggregated historical 
data, and their independence on detailed technological descriptions, they have been vastly used in urban energy 
studies such as [18], [19]. However, dependence on historical macroeconomic energy trends and lack of 
technological detail make these models less suitable to examine changes in technology for current and future 
development studies.  
Bottom-up models, in contrast, are built up from extensive data on a disaggregated level for estimation of 
individual building energy use and extrapolation of the aggregated energy demand. Concerning the level of detail 
in the end-use information and the applied methodology, bottom-up models are divided into three categories: 
statistical, engineering (physical) and hybrid models. The bottom-up statistical models can represent the relations 
of individual end-XVe eneUg\ ZiWh bXildingV¶ chaUacWeUiVWicV and Vocioeconomic indicaWoUV [20]±[22]. On the other 
hand, the engineering models make use of physical and technological characteristics of individual buildings to 
compute the required energy demand. These models have the highest level of flexibility in evaluating 
technological developments and energy efficiency scenarios. Nonetheless, the need for extensive empirical data 
and the inherent uncertainties in applied assumptions, particularly for human activities and occupancy profiles, 
motivate the use of hybrid models. In the hybrid models, while the buildings are modeled according to their 
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physical characteristics (just like in the engineering models), the required data, particulaUl\ Whe occXSanW¶V UelaWed 
data, is obtained from analysis of the historical energy use intensity (as in the statistical models). Thus, the 
shortcomings of both models are more likely to be compensated to achieve a more sophisticated model [23]±[26]. 
In the literature, the method for bottom-up city-scale energy modeling of buildings that includes physical models 
of heat and mass transfeU in and aUoXnd bXildingV aUe UefeUUed Wo aV ³XUban bXilding eneUg\ modeling´ [7].  
 
 
1.2 Previous reviews in the field of city-scale energy modeling of buildings
In terms of city scale-energy modeling of buildings, many review articles have been dedicated to summarizing 
and synthesizing different aspects of the field, such as in [15], which presents an audit of regional and national 
energy modeling techniques and critically discusses their strengths and weaknesses. This review is one of the very 
first studies on detailed characterization and categorization of top-down and bottom-up city-scale energy models 
of buildings. Nonetheless, modeling approaches have changed considerably since 2009, when the study was 
published, and despite being a valuable resource, this cannot be reflective of the complete field anymore. 
Following the same terminology, Kavgic et al. [17] offered a brief overview of top-down and bottom-up models. 
The main focus of this review is on elaboration of some selected bottom-up residential stock models and their 
applications. Similarly, this review is not up-to-date and also is not inclusive enough.  
Keirstead et al. [27] presented a formal definition for urban energy systems, incorporated both processes of 
acquiring and using energy and evaluated the main attributes of previous urban energy models, namely, 
technology design, building design, urban climate, systems design, and policy assessment. However, what makes 
this review different from the others is its approach towards human activity and land use models and evaluation 
of their integration into urban energy system models. While in this review a unique approach was used to address 
the field, it is more focused on the concepts rather than the technologies and methodologies. 
Allegrini et al. [14] paid special attention to energy systems and their interactions with buildings. This viewpoint 
led to an inclusive review on models and tools that are used in simulation of energy systems. Moreover, due to 
the importance of the interactions between the local microclimate and buildings, the possibilities of modeling 
microclimate components were also discussed. Nonetheless, not all of the suggested tools are necessarily capable 
of being used in district- or city-scale energy modeling and not all have been used in previous studies. Although 
this review justifies the interactions between buildings and the energy systems in districts, no overview of the 
building energy modeling is given.  
For the first time in the field, Reinhart and Cerezo Davila [7] presented a brief and concise overview of the bottom-
up engineering (physical) methods specifically. They termed the bottom-up engineering modeling as ³urban 
building energy modeling (UBEM)´ which has recently become known and used as a common term in the field. 
This review includes the most important aspects of UBEM, yet it is lacking an investigation of future prospects, 
approaches and possibilities.    
Similar to the work done by Swan and Ugursal [15] , Li et al. [16] provided an up-to-date summary of city-scale 
energy modeling techniques in the two broad categories of top-down and bottom-up approaches. Despite being 
an inclusive review, considering the extent of the field, many notable studies in the area of UBEM were not 
included or thoroughly discussed. 
While most of the previous reviews have covered the general aspects of city-scale energy modeling, particularly 
top-down and bottom-up approaches, others aimed to survey more specific topics of the field, ranging from 
occupancy models [28] and microclimate models and their integration with UBEM [29] to the energy-saving 
potential in developed models [30].  
 
 
1.3 Aim of this review 
As can be concluded from the previous section, in the context of city-scale energy modeling of buildings and, 
specifically, bottom-up engineering (physical) modeling referred to as UBEM, it is necessary to provide a new 
literature review that summarizes the previous studies, highlights the research gaps and suggests new horizons for 
the field. The goals of this review is therefore to: 

x Provide an extensive overview of the bottom-up engineering (physical) modeling known as UBEM. 
x Analyze existing studies and outline a methodology for developing urban building energy models 

(UBEMs). The main approach is to encompass all different parts of the workflow, in particular those that 
have not been extensively discussed before, e.g., building archetypes, databases and visualization. 

x Introduce the latest improvements of the field and identify the research gaps. 
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x Explore models for other parts of the urban environment that interconnect with buildings, e.g., urban 
mobility, and try to find a common ground for their integration to UBEM. 

x Finally, propose how to bridge the research gaps and suggest what to focus on in future works. 
 

Overall, the novelty of this review is in its objective to survey approaches, opportunities and challenges in UBEM 
specifically, and to broaden the horizon for integrated urban building energy models that would include not only 
the urban building energy models but also urban mobility models, urban climate models, and the like.  
 
 
1.4 Outline of the work
This paper is structured in four main sections as follows. In Section 2, urban building energy modeling, state-of-
the-art and best practices are highlighted. However, considering the large extent of the field, this section is divided 
into subsections, each introducing one important part of the UBEM methodology from model development and 
model simulation to visualization of the results and databases. Section 3 presents the latest developments in other 
areas of urban modeling and tries to find a common ground between these models and UBEMs, which could be 
potentially used for further improvement of UBEM in future studies. In Section 4, a discussion on findings, 
challenges and opportunities, as well as suggestions for further research and development, is included. Finally, in 
Section 5, the conclusions from this review is presented.  
 
 
2 Urban building energy modeling 
As in individual building energy modeling (BEM)1, the UBEM procedure is composed of several steps, including 
the development of energy models of buildings from their geometric and non-geometric properties and simulation 
of the models in a simulation engine. However, the modeling procedure is not as straightforward and is associated 
with different challenges and uncertainties. Inferred from the literature and previous studies, an overview of the 
modeling procedure in UBEM is illustrated in Figure 1. The modeling procedure for an UBEM starts with 
identification of the geometrical properties of buildings, i.e., shape, geometry and geospatial positions, through 
3D models of the city (see Section 2.1.1). In addition, non-geometrical properties of buildings, i.e., material, 
system and occupancy, are defined by building archetypes that represent the most important characteristics of the 
building stock (see Section 2.1.2). Then, together with predefined climatic conditions (see Sections 2.2.1.1), all 
the required inputs are imported to an UBEM simulation engine in which the thermal model is initiated and 
simulated (see Section 2.2.2). The simulation results for energy demand in cities as well as the input parameters 
can be stored in a database and visualized in a suitable application (see Section 2.3).  
By listing some of the key properties of the existing models, at the end of this section, some of the most important 
UBEM studies with respect to the content of this section are also summarized in Table 4. 
 
  

                                                           
1 For further details on building energy modeling, the reader is referred to [31]. 
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Figure 1. Overview of Urban Building Energy Modeling. 

 
2.1 Model Development 
2.1.1 3D city model 
As for BEM, UBEM also requires a description of the geometry of the buildings and their surroundings, which 
affects the building energy and thermal performance. The geometry can be further characterized with short- and 
long-wave optical properties of surfaces, for example, their solar reflectance. The UBEM accuracy is dependent 
on the level of detail and accuracy of the 3D city model, as fundamental parameters are calculated from the 
geometry, such as outdoor exposed surfaces and conditioned space, as well as the relation between different 
buildings (e.g., two buildings sharing the same wall) and exposition to radiation from the sky, sun and the urban 
context. 
Energy demand estimation is indeed one typical example of a non-visualization oriented application of 3D city 
models [32]. 3D city models are a representation of the different components of the city, in particular of buildings. 
3D city models can be obtained with different acquisition methods [32], including, for example, photogrammetry 
and laser scanning, e.g., light detection and ranging (LiDAR), or a virtual extrusion of the building footprints. 
Table 1 lists the main characteristics of the 3D city model for some sample UBEM application studies. 
Most of the studies use standard cadastral information, such as building footprints and height to generate by virtual 
extrusion a shoe-box model of buildings, which corresponds to Level of Detail 1 (LOD1) according to the Open 
Geospatial Consortium (OGC) classification [33]. Some studies, especially those also targeting solar potential 
analysis, provide a more detailed geometrical representation of the buildings, including the actual shape of the 
building (LOD2), or even overhangs, dormers and other architectural details (which we will refer to as LOD2+). 
However, it should be noted that the error due to a coarse LOD can be compensated by the use of some data as 
non-geometrical attributes of the geometry; for example, the volume of the attic in a gable roof that is not 
represented in a LOD1 model can be added to the volume calculated from the shoe-box model. In this sense, the 
importance of having LOD higher than LOD1 in UBEM is secondary, as shown by Nouvel et al. [34]. Moreover, 
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some details present in a LOD3, such as roof overhangs, are not part of the building thermal envelope [35], making 
them unsuitable for building energy simulations without specific processing. 
If not already included in its semantics, an important component of the 3D city model for UBEM application is 
the topological relation between geometrical objects with different thermal properties, such as the contact with 
the ground and the walls shared between different thermal zones. Some algorithms have been developed [36], 
[37] to solve this type of adjacency problem in UBEM. 
In addition to building geometry, the main other components of 3D city models are topography (terrain and 
horizon/far-field obstructions) and vegetation. Topography can be easily generated from Digital Elevation Models 
(DEM), which are widely accessible in most locations. Vegetation can be reconstructed using LiDAR data or 
georeferenced databases providing the characteristics of trees. 
For large-scale studies, the 3D city model is usually subdivided in tiles, to be more easily processed by 
computational methods. To this end, Romero Rodríguez et al. [38] showed the optimal tile characteristics (size 
and overlap) for UBEM and solar potential applications. 
 

Table 1. Characteristics of the 3D city models used in some sample UBEM application studies. 

Study Components of 3D city model Surface 
attributes 

Level of 
Detail 

Source of geometry 
information 

Perez [39] Buildings, terrain, horizon Shortwave 
reflectance LOD1 Cadaster 

Fonseca et al. [40] Buildings, terrain  LOD1 Cadaster 

Cerezo Davila et al. 
[36] Buildings  LOD1 Cadaster 

Peronato [36] Buildings, terrain, horizon, 
vegetation 

Shortwave 
reflectance LOD2+ 3D cadaster and 

LiDAR data 

Weiler et al. [41] Buildings, terrain  LOD2 3D cadaster 

 
 
2.1.2 Archetype development 
Data collection and model characterization for each individual building in UBEM is difficult, hence abstracting 
the building stock into representative archetypes is a useful and often necessary approach. Although most of the 
surveyed studies relied on simple archetype development from readily available data and building information 
standards, application of machine learning techniques has opened up new horizons to this field, which has resulted 
in increased accuracy but also higher complexity of the models. In these approaches, building archetypes are 
identified in three main steps. First, the building stock is classified into different groups, according to their similar 
characteristics and energy demand. Second, representative building archetypes are characterized. Third, to address 
the uncertainties of the used parameters in archetype models, the archetypes are calibrated against measured 
energy use data at different spatiotemporal aggregations. These three steps are reviewed in more detail below. 
 
2.1.2.1 Archetype classification 
Classification of the building stock into sub-groups of typologically identical buildings and identification of 
representative buildings may involve various technical methods. The applied methodologies can be divided into 
three main categories:  
 
x Deterministic Classification 
In a deterministic approach, buildings are classified according to their theoretical energy use determined by some 
parameters such as use-type, age, shape and floor area. The building use typology (e.g., residential, administrative, 
commercial, etc.) presents an approximation to the energy demand profile, and the year of construction or the 
effective year (i.e., the year at which the building were under a major refurbishment) can allow a good estimation 
of construction materials and systems [36], [42], [43]. In addition to these four parameters, depending on the 
availability of data, the type of heating, ventilation and air conditioning systems (HVAC) [44] or the climatic 
conditions [45] are often used as other indicators for classification of the archetypes. This categorization of 
buildings, using readily available data from public or municipal datasets, e.g., Geograpical information system 
(GIS) data, is the most applied method in UBEM studies. However, generic classification of the archetypes using 
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the simplified deterministic approach misrepresent the real diversity of the buildings, which may result in 
inaccurate energy demand patterns, particularly for higher spatiotemporal resolutions. 
 
x Probabilistic classification  
Another approach in archetype classification is to use historic energy demand data as an auxiliary indicator, by 
which categorization of the buildings significantly improves [46]. Statistical identification of the parameters with 
the strongest correlation to real energy use intensity can accurately represent the diversity of the energy demand 
in different archetypes [46]±[48]. Categorization of the buildings with respect to their actual energy demand can 
significantly reduce the uncertainties associated with deterministic classification methods based on theoretical 
relations between indicators and energy use. However, availability of measured energy use data and access to 
such information are the main challenges in applying the probabilistic approaches.  
 
x Cluster analysis 
Implementation of clustering techniques in archetype classification is a rather novel approach in UBEM [49]. Data 
clustering is a well-known data mining method which provides an unsupervised classification of the data 
according to their similarities, e.g., patterns, and representative elements [50]. Although the clustering approach 
is a new concept in UBEM, they are widely employed by the utility companies to classify the consumers based 
on their electricity use profile in order to set specific electricity tariff structures or demand side management 
schemes [51], [52]. However, in most of these studies, the buildings¶ characteristics are not of importance and the 
main norm in classification of the consumers is the profiling information acquired from smart metering. In 
classification of the building stock by clustering methods, the building features that influence the thermal behavior 
of the buildings are identified and translated into cluster classifiers [49], [53]±[57]. When the clusters have been 
identified, it is possible to select the most representative case as the chosen archetype for the given group. Unlike 
in the deterministic or probabilistic methods, in clustering techniques, the membership information is not used as 
a prior input; instead, the classification of the buildings results from hidden structures with the thermal energy 
demand. 
 
2.1.2.2 Archetype characterization 
After classification of the building stock and identification of the archetypes, each reference building has to be 
characterized by the non-geometric parameters, including the construction materials, infiltration, HVAC types, 
and occupancy profiles. Depending on the availability of data, these parameters are deterministically or 
probabilistically defined, as outlined below. 
 
x Deterministic characterization 
In deterministic characterization of the archetypes, depending on the level of granularity, characteristics of the 
archetypes are sometimes taken from a ³Ueal caVe´, i.e., one of the buildings of the class. By having access to 
building audits and building stock information, actual or averaged values of each parameter are acquired and 
assigned to the corresponding archetypes [47]. However, due to the constraints in having access to building-level 
data sources, it is less common to conduct a pure deterministic characterization. Thus, building model parameters 
are instead compiled from building codes and standards, literature or previous studies. In Europe, under the scope 
of a European project known as TABULA [58], one of the most comprehensive residential building typology 
information datasets, has been developed for 20 European countries. The results are freely accessible as a web 
tool to be used in building-oriented studies. Two other European projects, Odyssee-Mure [59] and Entranze [60], 
are other examples of databases that can be applied for European building characterizations. 
Despite the functionality of the deterministic characterization of archetypes, to cope with the inherent uncertainties 
associated with the input data and the usually limited or non-existent information on occupants-related parameters, 
probabilistic approaches are suggested instead. 
 
x Probabilistic characterization 
In building- and energy-oriented studies, probabilistic models of occXSanWV¶ presence and action have already 
been developed and extensively improved [59]±[61]. The occXSanWV¶ behaYioU iV knoZn aV one of Whe main dUiYeUV 
of energy use in buildings; however, in the field of UBEM, it is still not a well-developed topic. Most of the 
previous UBEMs Uelied on deWeUminiVWic SaUameWeUV and VchedXleV foU occXSanWV¶ behaYioU [36], [44], [64], while 
only a few took the probabilistic evaluation into account [65], [66]. A comprehensive review of the occupancy 
models in UBEM is given by Happle et al. [28].  
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With a wider approach, not only the occupant-related information but also other uncertain characteristics of 
buildings (e.g., air change rate, window-to-wall ratio and thermal properties) can be treated stochastically. As in 
the studies by Famuyibo et al. [48], Cerezo et al. [46] and Sokol et al. [42], based on deterministic values and 
assumptions, empirical distributions of the unsure parameters were obtained from uncertainty modeling 
techniques and applied to the model.  
However, by analyzing the previous works it is evident that the probabilistic methods have not been completely 
introduced to UBEM yet. As regards the inherent complexity of probabilistic methods and their extensive 
computation procedure, they will increase the complexity along with the accuracy of the urban building energy 
models. Nonetheless, it is expected that this method will find its position in urban energy modeling as well as in 
individual building studies.  
 
2.1.2.3 Archetype calibration 
In an attempt to address the uncertainties associated with characterization of the archetypes, and to reduce the 
discrepancies between predicted energy demand and actual measurements, calibration methods are needed in 
building energy studies [42], [67]±[69]. If the energy use intensity is available, in the simplest method, the 
calibration will be an iterative process of adjusting the few uncertain parameters in order to reach a reasonable 
approximation to measurements [70]. However, due to the limitations in deterministic characterization of the 
archetypes and the growing tendency towards probabilistic parameterization, novel calibration methods focus on 
adjusting the results based on probability distributions assigned to each uncertain parameter [71]. Among all 
calibration techniques available for BEM [72], in UBEM the Bayesian calibration in capturing the uncertainties 
of stochastic parameters was proven to be successful [42], [68], [69], [71].  
Booth et al. [71] conducted a Bayesian calibration posterior distribution method to determine the uncertain 
parameters and integrated it with a Monte-Carlo model to create a full probabilistic calibration method for 
developing a stochastic urban scale domestic energy model. Kristensen et al. [68], [69] developed a multilevel 
simultaneous modeling and calibration framework. By means of a set of observed data and Bayesian inference, 
the uncertain parameters were calibrated in a hierarchal setting. Cerezo et al. and Sokol et al. [42], [46], [73] 
proposed a Bayesian approach based on an iterative process of error analysis between dynamic thermal simulation 
and monthly or annually aggregated data.  
The archetype development methods in some of the UBEM studies are summarized in Table 2. Note that only the 
most representative studies are included in this table.  
 

Table 2. Archetype approach in some sample UBEM studies. 

Study Classification 
method Characterization Calibration Novelty 

Caputo et al. [74] Deterministic Deterministic - - 

Sokol et al. [42] Deterministic Deterministic and 
probabilistic 

Iterative Bayesian 
calibration techniques 

- Automate calibration of the uncertain 
parameters. 

Famuyibo et al. 
[48] 

Probabilistic Probabilistic - - Clustering the building construction 
parameters with respect to each other. 

Kristensen et al. 
[68] 

Deterministic Probabilistic Bayesian  calibration 
techniques 

- Simultaneous modeling and calibration 
(Hierarchical calibration). 

Booth et al. [71] Deterministic Probabilistic Bayesian  calibration 
techniques 

- Prior uncertainty distribution analysis to 
form posterior uncertainty models and 
calibrated parameters.  

Ghiassi and 
Mahdavi [53] 

Clustering  Deterministic - - Automated building sampling by 
multivariate cluster analysis. 

Li et al. [55] Clustering  Deterministic - - Use of satellite image for clustering 
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2.2 Model simulation 
In BEM, once bXildingV¶ infoUmaWion (geomeWUic and non-geometric) is ready, it is imported to a simulation 
engine, in which thermal models are defined and simulated for desired weather conditions. Similarly, in the most 
recent UBEM workflows, once the 3D models of buildings and the characteristics of the representative archetypes 
are prepared, in an iterative process, the thermal models of buildings are generated automatically and simulated 
under certain climatic conditions. As a result, the urban energy demand for different spatiotemporal resolutions 
can be extracted from the model. Once properly validated, the model can be reliably used for further urban energy 
integrated planning and development studies. A survey of thermal modeling and energy simulation for urban 
climate in previous works is included below. 
 

2.2.1 Urban climate data 

As in BEM, the UBEM simulation is conducted for a certain weather condition acquired from measurement data. 
However, unlike BEM, in most UBEM studies the urban context and its influences on the radiation component of 
the urban climate is considered through radiation models. The radiation modeling and shading analysis are usually 
conducted by internal calculations or co-simulation with other tools.  
 
2.2.1.1 Weather data 
Due to the direct influence of weather conditions on the thermal energy demand of buildings, importing an 
appropriate weather dataset to the model is important for the accuracy of the results [75]. In dynamic building 
energy modeling, several different weather data sets are commonly used [76]. Typical weather data obtained from 
historic measurements (20-30 years) of weather components, referred to as typical meteorological years (TMYs), 
are the predominant climate data used in UBEM [77]. Albeit, there are a few studies which relied on different 
sources of data. For example, Buffat et al. [78] focused on the daily mean temperature acquired from the 
MeteoSwiss measured on a daily basis and interpolated by measurements of 70 to 110 weather stations. The 
radiation data was calculated from the synthetic algorithms of satellite information [78].   
 
2.2.1.2 Radiation models 
Estimating the solar radiation reaching the building surfaces is crucial for calculating the energy balance of a 
building. In an urban context, solar access is often limited. The exact geometry is also influencing the long-wave 
radiation exchanges between different surfaces, which can be calculated with similar methods by some of the 
reviewed engines (EnergyPlus and SRA).  
We can distinguish between three main methods for solar radiation considering shading (and in some 
cases interreflections) from the urban geometry:  
 

x Viewshed analysis 
In a raster 2.5D model, the maximum angle of obstruction around the sensor point (i.e., one or more pixels 
composing the model) is calculated; this is used to generate a viewshed, i.e. the angular distribution of 
sky obstructions, which is subsequently overlaid on the sky and sun contributions. This method, which is common 
in GIS-based solar potential analysis, was adapted for applications with vector 3D city models since the first 
version of CEA [40]. 
 

x Backward raytracing  
In a 3D model, rays are cast from selected sensor points on exterior surfaces. If a ray intersects a reflecting surface 
(e.g., another building surface), one (specular) or multiple (diffuse) rays are bounced off until reaching either a 
fixed maximum number of bounces or the sky/sun. Radiance [79] is an advanced physically-accurate rendering 
engine, which is used by Daysim [80] to compute annual simulations. EnergyPlus also includes a backward 
raytracing algorithm which supports diffuse and specular materials and one interreflection, using a fixed amount 
of rays from the sensor points on the building faces.   
 

x Radiosity 
In a 3D model, view factors are calculated for each face of a mesh describing the 3D model, to calculate the 
contribution of each of them to the radiant energy balance. This method was first developed in computer 
graphics [81]. CitySim and its predecessor SunTool implement a Simplified Radiosity Algorithm (SRA) [82], 
[83] which is suitable for predicting short and long-wave radiation on large urban models.    
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In Table 3, we display the features of solar radiation simulation engines used in urban building energy 
models. Some solar radiation simulation engines are used by multiple tools, and, conversely, some tools allow the 
user to choose among different solar radiation engines. Compared to solar radiation studies, the resolution of the 
discretization of surfaces in sensor points is low, with usually one sensor point considered per each semantic 
surface (e.g., a wall), while EnergyPlus considers one sensor per each vertex of the surface.  In viewshed analysis 
and backward raytracing the sensor points are independent from the obstructing urban geometry, while 
in radiosity algorithms view factors have to be calculated on all mesh faces composing the 3D model. With 
regards to the sky model, most engines have implemented state-of-the-art anisotropic sky models such as the Perez 
models [84], [85]. All engines include a sample of the actual sun positions, which are usually computed for all 
daylight hours only for some representative days. Daysim (in its default daylight coefficient method), for example, 
includes 65 direct sun positions for latitudes around 45°, calculated on all full-hour solar times for the 21st day of 
each 4th month when the sun is above the horizon.  
It is interesting to note that EnergyPlus was conceived as a building energy modeling simulation tool, but it is 
currently used also in UBEM. This is particularly due to its flexible parameters with regards to the solar radiation 
models, which can be set to include full inter-reflections of external and indoor surfaces. Similarly, 
also Daysim was conceived and is still primarily used for climate-based daylight modeling, while it has been 
adapted also for urban solar radiation studies and integrated in the later versions of CEA.  
 

Table 3. Features of solar radiation models implemented in common UBEM engines. 

Engine  Supported 
tools  Wave  

Sensor 
per 
surface  

Method  Inter-
reflections  Sun positions  Sky  

EnergyPlus 
[86]  

[87],  
CityBES [88] 

Short-
Long  

1 per 
vertex  Raytracing  

Single, 
diffuse and 
specular  

Hourly, every 
18 days  Anisotropic [85] 

SRA [82], 
[83]  

CitySim, 
SimStadt1  

Short-
Long  

1 per 
mesh 
face  

Radiosity  Multiple, 
diffuse-only  

Hourly, every 
month  

145 Tregenza patches; 
Anisotropic based 
on [84]  

Daysim 
[80]  CEA  Short  

Can be 
set by the 
user  

Raytracing  Multiple  Hourly, every 4 
months  

145 Tregenza patches; 
anisotropic [84] 

SolarAnalyst 
[89]  CEA  Short  N/A  Viewshed  No  Half-hourly, 

every month  
16x16 sectors; 
Isotropic  

 

2.2.2 UBEM simulation engine 

The urban building energy modeling simulation engine is the main core of an UBEM, which takes the 
responsibility in translating all the input parameters into mathematical equations, generates the model and 
performs the simulation. Here, more details on UBEM simulation engines and their components are included.   
  
2.2.2.1 Thermal models 
The thermal behavior of a building can be described by the numerical equations of heat and mass flows inside, 
through, and outside of the building envelope, referred to as the thermal model of the building.  Thermal 
modeling in the field of UBEM is associated with complexity and diversity. However, in terms of modeling 
strategy, all the previously developed UBEMs used either of two approaches: some relied on existing computer-
based BEM tools and used them as the main core of their UBEM, while the others developed their own tailor-
made thermal modeling algorithms. These two approaches are described below. 
 
x Computer-based BEM modeling tools 
There no doubt about the maturity of BEM and the application of computational simulation tools in modeling, 
analysis and optimization of individual building energy systems [90]. Therefore, one of the most common 
approaches in development of UBEM simulation engines is to take full advantage of the already established BEM 
tools. However, not every tool is capable of being coupled with the automated UBEM procedure. Among the 
available tools, EnergyPlus [86], IDA ICE [91] and TRNSYS [92], prove to be the most feasible ones in an UBEM 
simulation engine [93]. Hong et al. [88] and Reinhart et al. [94] based their models upon the energy simulation in 
EnergyPlus, and Nageler et al. [44] developed an UBEM using the co-simulation of IDA ICE for building models, 
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Figure 2. Zoning configurations: A. Single-zone model. B1. Multi-zone model, one zone 
per each floor and B2. Multi-zone model, five zones per each floor. 

TRNSYS for the energy supply units and  Dymola/Modelica for district heating networks [44]. However, despite 
proven application of such tools in UBEM, most of the studies agree on increased complexity of the model. Thus, 
to facilitate the modeling and calculation procedure, simplified methodologies, particularly for shading and 
adjacency, are suggested [95]. However, some other studies approached this in a different way and instead 
developed their own tailor-made models. 
 
x Tailor-made thermal modeling algorithms 
A tailor-made simulation engine is a refinement of numerical thermal models based on building construction and 
material information, as well as losses and gains. In the context of UBEM, modeling techniques based on the 
electrical analogy of heat transfer, i.e., resistance and capacitance (R-C), are known for their popularity. Kämpt 
and Robinson [96] conducted a comparative study on their already developed R-C model for a range of building 
configurations and concluded on the reliability and applicability of their R-C techniques for large-scale 
applications. Accordingly, the urban simulation tool Citysim [64] was developed in the same way. The tool city 
energy analyst (CEA), developed by Fonseca and Schlueter [97], was also developed around the R-C network 
suggested by the European Committee for Standardization on calculation of heating and cooling load in buildings. 
The other common category of tailor-made models rely on minimizing the number of required parameters and 
equations of the thermal models of buildings by means of reduction algorithms. These ³model UedXcWion meWhodV´ 
have been used in some of the notable studies. Kim et al. [98] derived a detailed Modelica-based model out of 
simplified physical models of buildings. The simplification was conducted in a preprocessing stage using 
reduction algorithms. The Citysim [64] precursor, Suntool [65], also applied a reduction method, known as a grey-
box model [26], to develop thermal models of buildings in the urban context.  
 
2.2.2.2 Zoning configuration 
In the simplest methodology, the thermal behavior of the building is modeled in one single zone for each building 
archetype [24], [65]. Relying on a simple heat balance model for the whole building, the computation time is 
considerably reduced in the single-zone models, while the accuracy of the results is adversely affected [99]. As 
the single-zone models are unable to completely capture the effects of the urban context and microclimate on the 
heat performance of the buildings, and as they fail to represent multi-use buildings, multi-zone thermal models 
are suggested instead [95], [100].  
 In multi-zone models, each building archetype is comprised of several thermal zones. There are different 
alternative zoning configurations, some of which follow the ASHRAE 90.1 Appendix G [101] guidelines for 
envelope settings and zoning configurations in buildings. Some examples of different multi-zone configurations 
are presented and compared by Smith [102]. However, in the context of UBEM, attention is paid mainly to two 
alternatives. In the first method, each building includes one thermal zone per each floor, as in [36]. In the other 
one [95], as in the ASHRAE guidelines, each floor is divided into five zones: one core zone and four perimeter 
zones. Although developing multi-zone models for building archetypes is feasible, in practice, detailed exploration 
of the buildings is a trade-off between the complexity of the model and the accuracy of the results. Therefore, for 
the sake of simplicity, each uniform-use building can be divided into three sections. The ground floor and the top 
floor are modeled explicitly while the intermediate floors are modeled as one floor which is later scaled up to the 
whole set of floors after the simulation is done as in [95]. The separation of the buildings in three sections and 
using floor or zone multipliers accelerate the simulation process at the same time as it yields accurate results. The 
most common zoning configurations in UBEM are illustrated in Figure 2. 
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Regardless of the zoning configuration, to obtain the aggregated energy demand of the city, the thermal models 
of the buildings can be generated either for the chosen archetypes or for each individual building in the city. If 
only the representative archetypes are modeled, the simulation results have to be scaled up. The upscaling of the 
results from archetypes to clusters and the whole city is done by means of multiplication factors; for example, 
Heiple et al. [70] used the floor weighted area in order to obtain the city-wide energy demand while Caputo et al. 
[74] multiplied the results by the number of existing buildings in the identified building groups. On the other hand, 
generation of thermal zone models for all the buildings can be done using 3D city models of the whole city [87]. 
With a 3D building model of the whole city, influences of the urban context and solar radiation on the energy 
performance of the buildings can be taken into consideration. However, converting 3D models of a large number 
of buildings to thermal models is not a straightforward process, and automated zoning algorithms are required. 
With the focus on the auto zoning process, Dogan et al. [100], [103] recommend an automated shoebox model in 
creating multi-zone models from the 3D building models. The shoe-box algorithms automatically discretize the 
buildings and abstract them into one or several perimeter and core models that are placed in representative 
locations within the building. Moreover, the buildings are clustered based on their identical geometries. The 
energy model of each shoebox then extrapolated to the whole building. With a different method, Chen and Hong 
[95] developed an automatic pixel-based algorithm to divide 2D building polygons into 4 perimeters and a core. 
They used the pixels and color codes to separate the indoor space into representative thermal zones. 
 
2.2.2.3 Energy simulation and validation 
As discussed in the previous sections, the thermal behavior of a building is described by single or multi-zone 
thermal models, and the thermal models are defined by numerical equations of heat and mass transfer through 
BEM tools or tailor-made models, referred to as an UBEM simulation engine.  
The UBEM engines perform the simulation procedure either using quasi-steady-state methods and calculate the 
heat balance over a sufficiently long period (i.e., month or year)[78] [104], or use a dynamic approach and produce 
results on short time steps (e.g. hourly) [94]. Although the thermal mass of buildings is ignored in the steady-state 
methods, the approximations are good enough to be used for aggregated energy analysis. In dynamic building 
energy simulations all energy phenomena in, around and through the building envelope are captured, not only for 
annual but also for hourly or even sub-hourly time steps. Accurate calculation of the energy performance of 
buildings considerably improves the results compared to the quasi-steady state methods and, consequently, the 
increased complexity of the method leads to an incremental rise in computation time. [105] 
Most of the previous studies underline the extensive computation time required for dynamic simulation of 
UBEMs, but it is noted that only a few have presented the corresponding values. The paper introducing the very 
first UBEM tool, known as Suntool [65], is one of the few studies that clearly discussed the calculation time, 
including both pre-processing and energy simulation. By conducting a parametric study of the simulation time as 
a function of number of buildings and for two building types, it was proven that by increasing the numbers of 
buildings by 50%, i.e., from 100 buildings to 200, the simulation time for their tool could increase by roughly 
50% for mixed-use buildings (one storey office and six storey apartments) and slightly more than 50% for 
residential buildings (two storey detached houses).  
As has been mentioned before, to reach a certain level of accuracy while keeping the model complexity down, 
alternative strategies were applied by model developers; for example, Chen and Hong [95] made use of floor 
multipliers in energy calculation of multi-storey buildings, and Dogan and Reinhart [100] abstracted the thermal 
model generation by shoebox algorithms. To evaluate the simplification methods, the simulated energy demand 
is normally compared with measured data and validated for different spatiotemporal resolutions. 
In UBEM, validation of the results is critical, not only because of simplifications made in the simulation procedure 
but also because of the models' dependency on building archetypes in the absence of detailed building stock 
information. Abstracting all buildings to a few representative archetypes misrepresents the real diversity of 
buildings and usage patterns. Therefore, the reliability of the results and their applicability in sustainable urban 
development are highly dependent on validation of the model against aggregated measurement data. In most of 
the UBEM workflows, the results were compared with energy use and fuel consumption on an aggregated level.  
In [36], hourly and annual results from a UBEM tool were validated against the energy use and fuel consumption 
of the city of Boston and showed 5-20% averaged deviations for each zip code. Remmen et al. [66] compared the 
simulated results from their developed tool known as TEASER, not only for each archetype and on the building 
level, but also for the district level. When comparing the results for the year 2013, they found a 5.6% annual 
discrepancy on the district level.   
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2.3 Databases and data visualization 
UBEM is usually based on large datasets with a high resolution both spatially and temporally, containing, for 
example, high-resolution 3D geometry and extensive time series of simulated energy values. For this reason, 
different computationally efficient solutions to manage these data are needed, including storage, processing and 
visualization. In terms of data storage, there are both relational databases and file-based systems. Data 
interoperability between the different stakeholders using UBEM is also a crucial functionality for which 
standardized formats and platforms have been developed. [115] 
The most popular data format is based on the Open Geospatial Consortium (OGC) standard CityGML. The only 
alternative format, INSPIRE, partially based on CityGML, is conceived for a larger granularity and is less flexible 
with regards to energy applications [35]. CityGML is an XML-based structure designed to describe complex urban 
geometries such as the one presented in Section 2.1.1. CityGML can be seen as the city-scale counterpart of 
Building Information Modeling (BIM) formats such as IFC and gbXML and some works focus, in fact, on lossless 
conversion between these formats, e.g., from IFC to CityGML [116]. 
CityGML presents several Application Domain Extensions (ADEs) that are used to enrich the 3D city model and 
to model user-defined objects and attributes [117]. According to the review by Biljecki et al. [117],  three ADEs 
have been used in UBEM applications, two of them being designed more specifically for energy efficiency 
projects. The Energy ADE developed by Agugiaro et al. [115] is a comprehensive ADE that targets many energy 
applications in buildings. It can be considered the city-scale equivalent of the BIM format gbXML, which was 
conceived to share information between building energy models. It should be noted that the CityGML Energy 
ADE is intended to describe the building physics, occupant behavior, construction and materials, and energy 
systems parameters to be used in building performance simulation but also for storing the calculated energy 
demand values. It is complementary to the Utility Network ADE [118], which was developed to describe energy 
networks between buildings. 
In order to overcome the limitations of file-based databases, which are unsuitable for large 3D city models, 
3DCityDB [119] provides an importer from CityGML to spatial relational database management systems 
(SRDBMSs) such as ORACLE Spatial and PostgreSQL/PostGIS. SRDBMS systems are supported by most GIS 
systems and other ETL (Extract, Transform, Load) tools. At the current development status, 3DCityDB does not 
support generic ADEs. However, the Energy ADE has a database implementation that is compatible with 
3DCityDB. 
3D city models have many visualization-oriented applications [32]. Despite the fact that the analysis of energy 
potential is not linked with the visualization features, the results are often communicated through the use of 
interactive 3D interfaces. For these reasons, 3DCityDB exports the 3D city model in some typical visualization-
oriented formats such as KML and Collada. It is also integrated with CesiumJS [120], a popular Virtual Globe 
Platform that allows web-based visualization and interaction with 3D city models. Other tools use GIS-embedded 
3D visualization capabilities [40] or rely on KML files to exchange information with other popular 3D mapping 
tools such as GoogleEarth [37]. 
Overall, we can distinguish between two main visualization strategies for the results of UBEM: 

x False-color visualization of the 3D geometry, in which the color usually indicates the building energy 
demand or other energy-related indicators as, e.g., in [104]. 

x Heat maps showing the spatial distribution of the energy demand across a city by resampling the data to 
a grid as, e.g., in [36], [37]. 

It should be noted that the two strategies above can be implemented in either 3D or 2D, but the 3D version does 
not substantially improve the communication of the results compared to the 2D one, unless a finer spatial 
granularity than whole buildings is implemented (e.g., heating demand for each floor). 
We can also consider UBEMs that target more specifically the neighborhood scale and urban design applications. 
In this case, some works have focused on visualization solutions oriented to computer graphics and 3D modeling, 
such as Rhinoceros. This is the case of the UMI tool [94], but also the City Energy Analyst (CEA) [111] is 
developing support for this interface in order to bridge the gap between UBEM and urban/building designers. In 
Table 5 the data management and visualization solutions of some notable UBEM studies are presented. 
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Table 5. Data management and visualization solutions of some notable UBEM studies. 

 
 

3 Future prospects of UBEM 
In the context of UBEM, buildings play a central role in the final energy demand estimations. However, buildings 
are not the only contributors; other elements of the urban environment, such as urban climate and urban energy 
systems, can influence the urban energy demand or be influenced by it. Although these urban models have not 
escaped the attention of the model developers, not all the UBEMs have incorporated them. Thus, in this section, 
an overview of these models and their potential integration with UBEM is provided. 
 
3.1 Integration with urban climate models 
The urban landscape and activities create a local climate different from the surrounding rural environment. The 
ambient temperature in cities is higher, a phenomenon referred to as the urban heat island (UHI) effect, which is 
due to a set of features; the local wind pattern is disturbed by the thermophysical and geometrical characteristics 
of the buildings, and solar radiation is reduced as a result of the decreased sky view factor caused by buildings 
and other obstacles [121]. The results of previous studies prove that the thermal energy performance of buildings 
is strongly contingent upon the urban climate and the surrounding environment [122]. Therefore, to accurately 
evaluate the heating and cooling demand of buildings, possible integration of urban climate models with UBEM 
has received increased attention in recent years. The urban climate can be modeled on different spatial scales, 
from mesoscale to micro-scale. 
Meso-scale meteorological models are weather forecasting methods that are combined with urban parametrization 
to predict the urban climate at high resolutions (around 0.2 -1 km) [123]. Parametrization is the process by which 
the important physical schemes that cannot be captured directly by the forecasting methods are determined for 
different spatial resolutions. The model resolution refers to the horizontal and vertical scales, which can be 
resolved by the numerical models for the area of interest [124]. Urban parameterization studies are divided into 
three main categories; slab models and two types of urban canopy models (UCMs), single-layer and multi-layer 
UCMs. In slab models, the thermal effect of the city on the atmosphere is determined using the modified heat 
capacity, thermal conductivity, surface albedo, roughness length and moisture availability for the urban surfaces 
and calculating the vertical energy and momentum flux to the atmosphere. UCMs use climatic parameters such 
as radiation, heat, moisture and momentum to estimate the energy flux from 3-dimensional urban surfaces such 
as walls, roofs and roads, to the atmosphere. The main difference between single and multi-layer UCMs lies in 
the representation of the vertical structure. In single-layer UCMs, the energy flux is averaged over the building 
height, while in multi-layer UCMs it is obtained from many sub-layers, which leads to higher resolution as well 
as higher complexity in the model. Due to the relatively complete scheme, UCMs are the most commonly applied 
models for simple energy modeling, particularly for simulation of UHI effects. [124]±[127] 
However, due to the large spatial resolution of the mesoscale models, they are unable to capture the heat and fluid 
dynamics in and around buildings. Moreover, the mesoscale models are complex to develop and expensive to 
compute. Thus, for a detailed model at meter-scale resolution, the micro-scale urban climate models, referred to 
as microclimate models, have been introduced [11], [128]. 
The microclimate models encompass different concepts to determine the interdependence of buildings and the 
urban local climate. The main principle is to use the climatic components such as ambient temperature, humidity, 
and local Zind, aV Zell aV Whe Volar and longZaYe radiaWion, and Whe bXildingV¶ form and We[WXre, to evaluate the 
local climate and the thermal behavior within the building blocks [11], [129]. At the building level, the knowledge 
about microclimate modeling is broad and suggested methods are proven as in the tools SOLENE-microclimate 

Tool/study Platform Format Data format(s) Visualization 

Cerezo Davila et al. 
[36] Rhinoceros Database, File N/A N/A 

Peronato [37] Rhinoceros File Tabular text, KML GoogleEarth 

Fonseca et al. [40] ArcGIS File SHP files ArcScene 

Weiler et al. [41] ... Relational database 
(3DCityDB) CityGML CesiumJS 
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[130], and UMsim [129]. However, at city-level modeling, complexity of the urban structure and calculation of 
the ground and surface temperature pose challenges to the modeling procedure [29], [129]. To cope with these, 
different approaches in integral modeling of microclimatic components such as radiation and convection have 
been assessed. As discussed in Section 2.2.1.2, estimation of the radiation component of the microclimate in 
UBEM is attainable. The convective heat transfer, on the other hand, is a component of local air temperature and 
urban wind profile, which are normally estimated by the flow models. In most urban microclimate models, the 
flow models are resolved by computational fluid dynamic (CFD) methods [131], which are capable of being 
integrated into the BEM studies. However, due to the inherent complexity of CFD, they are not considered as a 
promising option for inclusion in UBEM. Therefore, the number of UBEM studies considering integration of CFD 
with city-scale building models is negligible, and most of previous workflows ignored its influences on building 
energy performance. 
 
3.2 Integration with urban energy system models 
As has been discussed, buildings are the main components of urban energy studies, and their influence on urban 
energy flows is both on the demand and production, i.e., in the case of on-site generation of heat and electricity. 
When evaluating the energy performance of buildings on the urban-scale it is also important to consider which 
impacts their consumption and generation patterns have on the energy infrastructure that they are connected to. 
Extending the analysis of urban energy systems beyond the buildings requires including models of local energy 
utilities and energy distribution systems. District/urban energy system models is a well-developed field and the 
number of articles published in this area is considerable. Some of the available approaches, methods and tools for 
district-scale energy system modeling were summarized in a literature study by Allergrini et al. [14].  
A more comprehensive definition of urban energy system models has been provided in recent research. There, an 
Xrban energ\ V\VWem iV defined aV ³a formal system that represents the combined process of acquiring and using 
energy to satisfy the energy service demands of a given urban area´ [27]. Most of the UBEMs developed so far 
are limited to the demand-side. However, some UBEMs could be recognized as urban energy system models 
according to the definition above, including not only the buildings but also other parts of the energy systems, such 
as generation and distribution systems. CitySim [64] integrated the calculations on HVAC systems with the district 
energy conversion system (ECS), comprised of different technologies of generating and storing heat and 
elecWriciW\ Wo meeW Whe bXildingV¶ needs. For the sake of simplicity, these technologies were modeled based on 
performance curves with unlimited capacity in providing the energy. Nageler et al. [44] integrated the UBEM 
with two other models, one for distribution systems modeled in Dymola/Modelica and one for the energy supply 
units in TRNSYS, using the co-simulation interface for running simulations simultaneously in these software.  
Of all the surveyed models, CEA [111] provides the most far-reaching combination of a UBEM with urban energy 
models. The model consists of several modules. A demand module includes the building energy simulations and 
determines the end-use heating, cooling and electricity demand, and a supply system optimization module includes 
thermal networks and optimized distribution systems. Additionally, alternative energy technologies are modeled 
in another module including techno-economic models of several production, storage and distribution units. This 
allows CEA to be used for optimization and analysis of complete urban energy systems.  
 
3.3 Integration with thermal comfort models 
Thermal comfort of building occupants is the main factor influencing energy demand in buildings, yet it has been 
given little consideration in UBEM studies. Braulio-Gonzalo et al. [132] included the assessment of discomfort 
hours, while these were calculated on the archetypes and later extrapolated at the larger scale through statistical 
modeling.  Some engineering bottom-up UBEM studies mention the use of set-points for indoor air temperature 
[40], [87] and moisture content [40] to control the simulated HVAC system. The application of comfort models 
controlling, for example, the operative temperature or the evaluation of discomfort situations in engineering-
modeled buildings seem in general not appropriate for the level of detail of engineering bottom-up models, in 
particular, due to the limited information regarding radiant sources and airflow for indoor spaces.  
Nevertheless, UBEM opens new perspectives on simulation of thermal comfort and heat stress in outdoor spaces. 
Extensive literature reviews have been conducted in the field, in particular on the models for outdoor thermal 
comfort [133], [134]. The Universal Thermal Climate Index (UTCI) [135] is one of the most recent outdoor 
comfort models and has been applied to all climates [134].  
The growing interest in outdoor comfort is not limited to hot climates, but also in cities at temperate climates 
suffering from the Urban Heat Island effect [136] or evaluation of discomfort due to cold [137]. Moreover, outdoor 
comfort is one of the factors influencing outdoor activities [133], even if it was shown that in some cases people 
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tend to voluntarily choose uncomfortable situations, such as sunlight in a park [138]. More specifically, the 
willingness to walk or cycle is mentioned as influenced by favorable outdoor comfort conditions [137], [139], 
[140]. 
Some UBEM tools or their simulation engines are used as support for outdoor comfort studies and have therefore 
a double application potential. Naboni et al. [141] present a review of tools used for predicting the Mean Radiant 
Temperature (MRT) applied at the urban scale, some of which are based on UBEM simulation engines, such as 
CitySim and EnergyPlus. A comparison between the features of the two engines can be found in a work by Miller 
et al. [142]. Input parameters for MRT models such as wind speed, airspeed, relative humidity, long- and short 
solar radiation are also needed for (urban) building energy modeling.  Moreover, long-wave radiation emitted by 
buildings should be also included in the energy balance for MRT, whence the possible synergies between UBEM 
and outdoor comfort studies. 
 
3.4 Integration with urban mobility models 
The human-related effects on energy consumption in buildings has been one of the most studied topics in recent 
years. TheUe aUe diffeUenW modelV deYeloSed foU occXSanWV¶ SUeVence and acWion on building-level as in [61], [62] 
to present close-to-reality estimations on occupants-related energy demand. However, only a few studies are 
accounting for the urban-level occXSanWV¶ behavior in buildings. For example, in a recent study done by 
Mohammadi and Tylor [143], the spatial impacts of human behavior on the energy demand of buildings were 
evaluated using predictions on human mobility and urban mobility-based models. To predict the spatiotemporal 
dependencies between human mobility and energy demand in buildings, positional records of the individuals and 
the residential electricity use were analyzed over a course month for the city of Chicago. As a result, they 
developed a multivariate autoregressive model to predict the monthly electricity consumption with respect to the 
urban-level human behavior. Focusing on this dependency, Robinson et al. [64], developed an activity-based tool 
based on spatial information on individual transportation and integrated that to their UBEM, CitySim, as a pre-
processing step. This mobility tool, known as MATSim-T, was designed to exchange the results on arrival and 
departure time of occupants with the main model and alter the occupancy model accordingly. Thus, considering 
the proven correlations between human mobility patterns with energy demand in buildings and possible 
integration of UBEM with mobility models, the urban mobility models are further discussed here. 
Mobility iV Whe SUinciSal SaUW of Whe µXUban meWaboliVm¶ [144], which relates to the movement of people in the 
urban areas. In general, mobility models can be recognized by two scales, namely, individual motilities and 
general population flows [145]. Individual mobility models taking a certain level of uncertainty into account 
regarding the freedom of action in individuals leading to a degree of randomness in the patterns of travel. 
Nevertheless, several studies have shown that individual paths are far from randomness while individual activities 
have more discipline and easier to predict, which can be used to predict individual motilities. Application of 
individual mobility models have been widely studied and used in geography, transport and urban planning [146], 
[147]. 
The population level models can be categorized into four main groups including gravity models, intervening 
opportunities models, radiation model, and transportation models. Gravity models are commonly used 
mathematical model for predicting interplay between two or more locations to estimate the flows, the independent 
factors for prediction of population, communication size, amount of citation, and distance [148]±[150]. The 
gravity model mainly used many types of mobility network such as shipments [151] highway [152] 
travelers[153]±[155].  
The first intervening opportunities model was introduced by Stouffer [156]. He prepared a conceptual and formal 
model for human mobility and asserted that the number of cumulative between the origin and the destination is 
the key point in migration. The model is used to estimate the migration patterns between services and residences. 
The extended radiation model applies a conditional probability approach to accomplish a trip between two separate 
locations by considering the spatial distribution of opportunities. In the original version of the radiation model, 
the number of opportunities is approximated by the population, but the total inflows to each destination can be 
used too [155]±[157]. The main advantage of the radiation model compared with other spatial interaction models 
is the absence of a parameter to calibrate the observed data.  However, this advantage limits the model to be robust 
against the possible changes in the spatial scale [155]±[158]. To overcome this drawback, a radiation model with 
oSSoUWXniWieV¶ VelecWion [159] as well as an extended radiation model [160]  have been proposed.  In the extended 
version, according to the spatial distribution of opportunities, the conditional probability to perform a trip between 
two locations is ensue from the survival analysis framework. The number of chances is approximated by crowd 
in the based prescription of the radiation model while the total number of internal flows to each final location can 
be used [155]±[157]. The privilege of this model to another one is the lack of using a parameter to calibrate the 
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observed data. Furthermore, this privilege demonstrates a restriction on the model to be not sturdy enough against 
the shift in the spatial scale [155]±[158]. 
As discussed, temporal fluctuations of energy demand in buildings are driven by human activities and spatial 
mobility patterns. On the other hand, the urban-level human behavior is possible to predict using human mobility 
models. Thus, possible integration of urban mobility models with UBEMs for predicting the urban occupancies 
and also net-zero transportation, e.g., electric vehicle charging, is one of the main opportunities for improving 
urban energy studies. 
 
4 Discussion and suggestions for further research 
The review of the state-of-the-art shows that the research on urban building energy modeling is still growing in 
volume. Although the hybrid modeling raises the possibilities and facilitates the shortcomings of only engineering 
(physical) models, based on the survey of previous research, it is argued that there are still some noticeable gaps 
in hybrid UBEM that have to be further studied: 
 

x Archetype development using data mining and machine learning techniques, 
As mentioned previously, archetype development is one of the biggest challenges in UBEM. There is a great 
deal of uncertainty about the building stock due to, i.e., lack of availability of good quality data, which makes 
it hard to proceed with building archetypes. On the other hand, abstracting all the buildings of a city in a few 
classes, and sampling the characteristics of each class in one building archetype may not cover the diversity 
of buildings. Even though various known models have used a deterministic classification of the buildings, 
the results show a large deviation from measurement data. This underlines that the sampling criteria in 
deterministic methods are not inclusive enough, SaUWicXlaUl\ Zhen occXSanWV¶ behaYioU iV diVcXVVed. The 
probabilistic nature of the occupancy and energy use in the buildings, as well as the uncertainty in archetype 
development have sparked a discussion on the importance of data-analysis in UBEM and hybrid modeling. 
As was presented, some of the most recent studies used supervised and unsupervised machine learning 
techniques in developing building archetypes. Yet, no proven method has been established. However, most 
of these studies agree on iterative calibration of the archetypes by Bayesian statistics. This means that 
although the calibration methods are more generalized, there is still a need for further improvement of the 
archetype development process, particularly in classification and characterization methodologies. Machine 
learning algorithms are one of the promising approaches to this, even though their accuracy depends on 
extensive and high-quality sample data, which is hard to access.  

 
x Improved computing power, 
Most advancements in the area of UBEM are found in the process of thermal modeling and energy simulation 
of buildings. By taking full advantage of tailor-made algorithms of heat and mass transfer or using 
commercial energy simulation software as the core in the UBEM simulation engines, accurate energy 
calculations can be done. However, computation time is one of the greatest obstacles for large-scale energy 
simulation of buildings. To overcome this issue, different studies applied various approaches, ranging from 
very simple methods of upscaling results from archetypes to the whole city by means of multiplication factors, 
to advanced shoebox algorithms and building clustering for speeding up the building-by-building energy 
modeling. Parallel computing and cloud computing are the other alternatives in accelerating the energy 
simulation procedure. Improved computing power offers the possibility of faster simulation even for more 
complex models.  

 
x Model validation, 
While most of the studies present no estimation on the required computation time, others lack in validating 
their models against measurement data. As regards the level of uncertainty associated with modeling and 
simplification techniques, reliability of the UBEMs is strongly connected with validation of results. As not 
all the previous models were validated, their validity is difficult to judge.  

 
 
Apart from the advancements in UBEM, the main future prospect of UBEM is deemed to be in integrated 
modeling and integration of the models with other urban models: 
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x Integration of UBEM with urban microclimate models, 
As regards the direct influence of urban climate on the energy performance of buildings, association of UBEM 
with microclimate models was frequently argued for in previous works. Radiative exchange from and 
between buildings is a valuable piece of information that UBEM can provide to microclimate models that can 
be used, for example, for outdoor comfort studies. It can be argued that these already give a good 
understanding of the microclimate in many urban situations with reduced wind flow, while the greatest 
constraint is on outdoor wind flow models and their integration to (U)BEM studies. Despite the maturity of 
the field of CFD and its proven application in calculation of the energy and mass flows around the buildings, 
their complexity is a challenge. This leads to low scalability from building to district and city scale. However, 
by increasing the computation power and developing alternative microclimate models, the chance of 
integration of UBEM with full microclimate models is improved. Thus, urban climate models and their 
possible integration to UBEM should be surveyed.  

 
x Urban occupancy and integration of UBEM with urban mobility models, 
While most of the UBEMs have focused on the physical drivers of the urban energy flux, occupant-driven 
factors have been given less consideration. Realistic modeling of human activity on the building level is 
achieved through existing deterministic and stochastic models. Nonetheless, as for BEM, these models are 
not fully capable of being used in urban studies; hence, there is a need for occupancy models to be developed 
in urban occupancy models. Urban mobility models essentially account for human activities in both space 
and time. Although these models have been traditionally incorporated in urban transport planning, their 
integration into UBEM would potentially improve modeling of occXSanWV¶ behaYioU (SUeVence and acWiYiW\) 
in buildings. Compared to the urban climate models, urban mobility models related to UBEMs have barely 
been discussed and except few, e.g., [27] and [64], no other practical result is found in the literature. Thus, 
given the importance of filling the research gap, the integration of the urban mobility models with UBEMs 
cannot be overlooked. 

 
 
5 Conclusion 
During the last decade, a large body of research has been conducted in the field of bottom-up engineering 
(physical) energy modeling of buildings known as urban building energy modeling. These models detail buildings 
and their energy systems to determine energy flows throughout cities and can be used for energy planning and 
city development. However, the survey of the state-of-the-art studies proves that these models cannot capture the 
variations in building physics as well as occXSanWV¶ behaYioU in all their complexities and, thus, the modeling 
procedure needs to be combined with data-driven and probabilistic methods. Developed out of advantages of both 
engineering and statistical approaches, such hybrid models are considered to be promising methods in future 
UBEMs. Yet, no model is accurate unless it properly outlines the model uncertainties, calibrates the uncertain 
parameters, and validates the simulation results against measured data. While calibration techniques have found 
their way into UBEM, particularly in archetype development, most of the existing models are lacking in validation 
procedures.  
Besides hybrid modeling, this review underlines the future significance of UBEM in integrated modeling, i.e., 
integration of UBEM with urban models such as climate, energy systems, thermal comfort and particularly with 
mobility models. While some of these models have been considered for further development and integration with 
UBEMs, almost no published research considers integration of spatiotemporal human activity patterns through 
urban mobility models, despite their importance for occupancy patterns in buildings. Thus, this review strongly 
emphasizes the necessity of integration of UBEM with urban mobility modeling to advance occupancy modeling 
and associated uncertainties in city-scale energy analysis of buildings. 

  



22 
 

Acknowledgment 
ThiV VWXd\ ZaV SeUfoUmed ZiWhin Whe UeVeaUch SUojecW ³AcWiYiW\-Based Urban Building and Mobility Energy 
Modeling (UBMEM) foU Planning of FXWXUe CiWieV´, aV SaUW of the strategic innovation program Viable Cities, 
which is financed by the Swedish Energy Agency, VINNOVA and Formas. This work also forms part of the 
Swedish strategic research program StandUp for Energy. 
 

References 
[1] H. RiWchie and M. RoVeU, ³UUbani]aWion,´ Our World Data, Jan. 2019, Accessed: 17-Jan-2019. [Online]. 

Available: https://ourworldindata.org/urbanization. 
[2] ³EXUoSean CommiVVion,´ European Commission - European Commission. 

https://ec.europa.eu/commission/index_en (accessed Oct. 23, 2018). 
[3] S. ToUabi Moghadam, C. DelmaVWUo, S. P. CoUgnaWi, and P. LombaUdi, ³UUban eneUg\ Slanning SUocedXUe 

for sustainable development in the built environment: A review of available VSaWial aSSUoacheV,´ J. Clean. 
Prod., vol. 165, pp. 811±827, Nov. 2017, doi: 10.1016/j.jclepro.2017.07.142. 

[4] S. Cajot, M. Peter, J.-M. BahX, A. Koch, and F. MaUpchal, ³EneUg\ Planning in Whe UUban ConWe[W: 
ChallengeV and PeUVSecWiYeV,´ Energy Procedia, vol. 78, pp. 3366±3371, Nov. 2015, doi: 
10.1016/j.egypro.2015.11.752. 

[5] J. RoValeV CaUUeyn and E. WoUUell, ³UUban eneUg\ V\VWemV ZiWhin Whe WUanViWion Wo VXVWainable deYeloSmenW. 
A UeVeaUch agenda foU XUban meWaboliVm,´ Resour. Conserv. Recycl., vol. 132, pp. 258±266, May 2018, doi: 
10.1016/j.resconrec.2017.08.004. 

[6] S. N. G. Lo, B. NoUWon, and A. ManniV, ³DomeVWic eneUg\ XVe and aiU TXaliW\; a caVe VWXd\ of Whe ciW\ of 
BelfaVW,´ Appl. Energy, vol. 68, no. 1, pp. 1±18, Jan. 2001, doi: 10.1016/S0306-2619(00)00044-1. 

[7] C. F. ReinhaUW and C. CeUe]o DaYila, ³UUban bXilding eneUg\ modeling ± A UeYieZ of a naVcenW field,´ 
Build. Environ., vol. 97, pp. 196±202, Feb. 2016, doi: 10.1016/j.buildenv.2015.12.001. 

[8] T. Hong et al., ³CommeUcial BXilding EneUg\ SaYeU: An eneUg\ UeWUofiW anal\ViV WoolkiW,´ Appl. Energy, 
vol. 159, pp. 298±309, Dec. 2015, doi: 10.1016/j.apenergy.2015.09.002. 

[9] V. S. K. V. HaUiVh and A. KXmaU, ³A UeYieZ on modeling and VimXlaWion of bXilding eneUg\ V\VWemV,´ 
Renew. Sustain. Energy Rev., vol. 56, pp. 1272±1292, Apr. 2016, doi: 10.1016/j.rser.2015.12.040. 

[10] A. GUoV, E. Bo]onneW, C. InaUd, and M. MXV\, ³SimXlaWion WoolV Wo aVVeVV micUoclimaWe and bXilding 
energy ± A case study on the design of a new disWUicW,´ Energy Build., vol. 114, pp. 112±122, Feb. 2016, 
doi: 10.1016/j.enbuild.2015.06.032. 

[11] V. Dorer et al., ³MODELLING THE URBAN MICROCLIMATE AND ITS IMPACT ON THE  
ENERGY DEMAND OF BUILDINGS AND BUILDING CLUSTERS,´ in Proc. 13th Conference of 
International Building Performance Simulation Association, Accessed: 23-Oct-2018. [Online]. Available: 
https://pdfs.semanticscholar.org/9462/418a5feb9ad29968fbecff11eb0f2580d036.pdf. 

[12] X. Zhang et al., ³A UeYieZ of XUban eneUg\ V\VWemV aW bXilding clXVWeU level incorporating renewable-
energy-VoXUce (RES) enYeloSe VolXWionV,´ Appl. Energy, vol. 230, pp. 1034±1056, Nov. 2018, doi: 
10.1016/j.apenergy.2018.09.041. 

[13] R. Ramírez-VillegaV, O. EUikVVon, and T. OlofVVon, ³AVVeVVmenW of UenoYaWion meaVXUeV foU a dZelling 
area ± ImSacWV on eneUg\ efficienc\ and bXilding ceUWificaWion,´ Build. Environ., vol. 97, pp. 26±33, Feb. 
2016, doi: 10.1016/j.buildenv.2015.12.012. 

[14] J. AllegUini, K. OUehoXnig, G. MaYUomaWidiV, F. RXeVch, V. DoUeU, and R. EYinV, ³A UeYieZ of modelling 
approaches and tools for the simulation of district-Vcale eneUg\ V\VWemV,´ Renew. Sustain. Energy Rev., vol. 
52, pp. 1391±1404, Dec. 2015, doi: 10.1016/j.rser.2015.07.123. 

[15] L. G. SZan and V. I. UgXUVal, ³Modeling of end-use energy consumption in the residential sector: A review 
of modeling WechniTXeV,´ Renew. Sustain. Energy Rev., vol. 13, no. 8, pp. 1819±1835, Oct. 2009, doi: 
10.1016/j.rser.2008.09.033. 

[16] W. Li et al., ³Modeling XUban bXilding eneUg\ XVe: A UeYieZ of modeling aSSUoacheV and SUocedXUeV,´ 
Energy, vol. 141, pp. 2445±2457, Dec. 2017, doi: 10.1016/j.energy.2017.11.071. 

[17] M. Kavgic, A. Mavrogianni, D. Mumovic, A. Summerfield, Z. Stevanovic, and M. Djurovic-PeWUoYic, ³A 
review of bottom-up building stock models for energy consumpWion in Whe UeVidenWial VecWoU,´ Build. 
Environ., vol. 45, no. 7, pp. 1683±1697, Jul. 2010, doi: 10.1016/j.buildenv.2010.01.021. 

[18]  D. J. SailoU and L. LX, ³A WoS±down methodology for developing diurnal and seasonal anthropogenic 
heaWing SUofileV foU XUban aUeaV,´ Atmos. Environ., vol. 38, no. 17, pp. 2737±2748, Jun. 2004, doi: 
10.1016/j.atmosenv.2004.01.034. 

[19] J. Tornberg and L. ThXYandeU, ³A GIS eneUg\ model foU Whe bXilding VWock of GoWeboUg,´ in Proc. 25th 
ESRI International User Conference, p. 16. 



23 
 

[20] C. E. KonWokoVWa and C. TXll, ³A daWa-driven predictive model of city-Vcale eneUg\ XVe in bXildingV,´ Appl. 
Energy, vol. 197, pp. 303±317, Jul. 2017, doi: 10.1016/j.apenergy.2017.04.005. 

[21] S. ToUabi Moghadam, J. Toniolo, G. MXWani, and P. LombaUdi, ³A GIS-statistical approach for assessing 
bXilW enYiUonmenW eneUg\ XVe aW XUban Vcale,´ Sustain. Cities Soc., vol. 37, pp. 70±84, Feb. 2018, doi: 
10.1016/j.scs.2017.10.002. 

[22] B. HoZaUd, L. PaUVhall, J. ThomSVon, S. HammeU, J. DickinVon, and V. Modi, ³SSaWial diVWUibXWion of 
XUban bXilding eneUg\ conVXmSWion b\ end XVe,´ Energy Build., vol. 45, pp. 141±151, Feb. 2012, doi: 
10.1016/j.enbuild.2011.10.061. 

[23] G. MXWani and V. TodeVchi, ³SSace heaWing modelV aW XUban Vcale foU bXildingV in Whe ciW\ of TXUin (IWal\),´ 
Energy Procedia, vol. 122, pp. 841±846, Sep. 2017, doi: 10.1016/j.egypro.2017.07.445. 

[24] R. Nouvel, A. Mastrucci, U. LeoSold, O. BaXme, V. CooUV, and U. EickeU, ³Combining GIS-based 
statistical and engineering urban heat consumption models: Towards a new framework for multi-scale 
Solic\ VXSSoUW,´ Energy Build., vol. 107, pp. 204±212, Nov. 2015, doi: 10.1016/j.enbuild.2015.08.021. 

[25] A. NXWkieZic], Z. Yang, and R. K. Jain, ³DaWa-driven Urban Energy Simulation (DUE-S): Integrating 
machine leaUning inWo an XUban bXilding eneUg\ VimXlaWion ZoUkfloZ,´ Energy Procedia, vol. 142, pp. 
2114±2119, Dec. 2017, doi: 10.1016/j.egypro.2017.12.614. 

[26] F. DpTXp, F. OlliYieU, and A. PobladoU, ³GUe\ bo[eV XVed Wo UeSUeVenW bXildingV ZiWh a minimXm nXmbeU of 
geomeWUic and WheUmal SaUameWeUV,´ Energy Build., vol. 31, no. 1, pp. 29±35, Jan. 2000, doi: 
10.1016/S0378-7788(98)00074-7. 

[27] J. KeiUVWead, M. JenningV, and A. SiYakXmaU, ³A UeYieZ of XUban eneUg\ V\VWem modelV: ASSUoacheV, 
challengeV and oSSoUWXniWieV,´ Renew. Sustain. Energy Rev., vol. 16, no. 6, pp. 3847±3866, Aug. 2012, doi: 
10.1016/j.rser.2012.02.047. 

[28] G. Happle, J. A. Fonseca, and A. SchlXeWeU, ³A UeYieZ on occXSanW behaYioU in XUban bXilding eneUg\ 
modelV,´ Energy Build., vol. 174, pp. 276±292, Sep. 2018, doi: 10.1016/j.enbuild.2018.06.030. 

[29] L. Frayssinet, L. Merlier, F. Kuznik, J.-L. Hubert, M. Milliez, and J.-J. Roux, ³Modeling Whe heaWing and 
cooling eneUg\ demand of XUban bXildingV aW ciW\ Vcale,´ Renew. Sustain. Energy Rev., vol. 81, pp. 2318±
2327, Jan. 2018, doi: 10.1016/j.rser.2017.06.040. 

[30] M. BU¡ggeU and K. B. WiWWchen, ³EVWimaWing Whe eneUg\-saving potential in national building stocks ± A 
meWhodolog\ UeYieZ,´ Renew. Sustain. Energy Rev., vol. 82, pp. 1489±1496, Feb. 2018, doi: 
10.1016/j.rser.2017.05.239. 

[31] J. L. M. Hensen and R. Lamberts, Building Performance Simulation for Design and Operation. Routledge, 
2012. 

[32] F. Biljecki, J. SWoWeU, H. LedoX[, S. ZlaWanoYa, and A. d|lWekin, ³ASSlicaWionV of 3D CiW\ ModelV: SWaWe of 
Whe AUW ReYieZ,´ ISPRS Int. J. Geo-Inf., vol. 4, no. 4, pp. 2842±2889, Dec. 2015, doi: 10.3390/ijgi4042842. 

[33] OGC, ³OGC CiW\ GeogUaShy Markup Language (CityGML) Encoding Standard - YeUVion 2.0.´ OSen 
Geospatial Consortium (OGC), 04-Apr-2012, [Online]. Available: 
https://portal.opengeospatial.org/files/?artifact_id=47842. 

[34] R. NoXYel, M. ZiUak, V. CooUV, and U. EickeU, ³The inflXence of data quality on urban heating demand 
modeling XVing 3D ciW\ modelV,´ Comput. Environ. Urban Syst., vol. 64, pp. 68±80, Jul. 2017, doi: 
10.1016/j.compenvurbsys.2016.12.005. 

[35] G. AgXgiaUo, J. BenneU, P. CiSUiano, and R. NoXYel, ³The EneUg\ ASSlicaWion Domain Extension for 
CiW\GML: enhancing inWeUoSeUabiliW\ foU XUban eneUg\ VimXlaWionV,´ Open Geospatial Data Softw. Stand., 
vol. 3, no. 1, p. 2, Mar. 2018, doi: 10.1186/s40965-018-0042-y. 

[36] C. CeUe]o DaYila, C. F. ReinhaUW, and J. L. BemiV, ³Modeling Boston: A workflow for the efficient 
geneUaWion and mainWenance of XUban bXilding eneUg\ modelV fUom e[iVWing geoVSaWial daWaVeWV,´ Energy, 
vol. 117, pp. 237±250, Dec. 2016, doi: 10.1016/j.energy.2016.10.057. 

[37] G. PeUonaWo, ³UUban Slanning VXSSoUW baVed on the photovoltaic potential of buildings: a multi-scenario 
Uanking V\VWem,´ Ecole Sol\WechniTXe fpdpUale de LaXVanne, LaXVanne, SZiW]eUland, 2019. 

[38] L. RomeUo RodUtgXe], R. NoXYel, E. DXminil, and U. EickeU, ³SeWWing inWelligenW ciW\ Wiling VWUaWegieV for 
XUban Vhading VimXlaWionV,´ Sol. Energy, vol. 157, pp. 880±894, Nov. 2017, doi: 
10.1016/j.solener.2017.09.017. 

[39] D. PeUe], ³A fUameZoUk Wo model and VimXlaWe Whe diVaggUegaWed eneUg\ floZV VXSSl\ing bXildingV in 
XUban aUeaV,´ PhD WheViV, Ecole Sol\technique fédérale de Lausanne, 2014. 

[40] J. A. Fonseca, T.-A. NgX\en, A. SchlXeWeU, and F. MaUechal, ³CiW\ EneUg\ Anal\VW (CEA): InWegUaWed 
fUameZoUk foU anal\ViV and oSWimi]aWion of bXilding eneUg\ V\VWemV in neighboUhoodV and ciW\ diVWUicWV,´ 
Energy Build., vol. 113, pp. 202±226, Feb. 2016, doi: 10.1016/j.enbuild.2015.11.055. 

[41] V. WeileU, J. SWaYe, and U. EickeU, ³ReneZable EneUg\ GeneUaWion ScenaUioV UVing 3D UUban Modeling 
Tools²Methodology for Heat Pump and Co-Generation Systems with Case Study ApSlicaWion �,´ 
Energies, vol. 12, no. 3, p. 403, Jan. 2019, doi: 10.3390/en12030403. 



24 
 

[42] J. Sokol, C. CeUe]o DaYila, and C. F. ReinhaUW, ³ValidaWion of a Ba\eVian-based method for defining 
UeVidenWial aUcheW\SeV in XUban bXilding eneUg\ modelV,´ Energy Build., vol. 134, pp. 11±24, Jan. 2017, doi: 
10.1016/j.enbuild.2016.10.050. 

[43] C. S. MonWeiUo, A. Pina, C. CeUe]o, C. ReinhaUW, and P. FeUUmo, ³The UVe of MXlWi-detail Building 
AUcheW\SeV in UUban EneUg\ Modelling,´ Energy Procedia, vol. 111, pp. 817±825, Mar. 2017, doi: 
10.1016/j.egypro.2017.03.244. 

[44] P. NageleU, G. SchZeigeU, H. SchUan]hofeU, T. Mach, R. HeimUaWh, and C. HochenaXeU, ³NoYel meWhod Wo 
simulate large-Vcale WheUmal ciW\ modelV,´ Energy, vol. 157, pp. 633±646, Aug. 2018, doi: 
10.1016/j.energy.2018.05.190. 

[45] S. HeiSle and D. J. SailoU, ³UVing bXilding eneUg\ VimXlaWion and geoVSaWial modeling WechniTXeV Wo 
deWeUmine high UeVolXWion bXilding VecWoU eneUg\ conVXmSWion SUofileV,´ Energy Build., vol. 40, no. 8, pp. 
1426±1436, Jan. 2008, doi: 10.1016/j.enbuild.2008.01.005. 

[46] C. Cerezo, J. Sokol, S. AlKhaled, C. Reinhart, A. Al-MXmin, and A. Hajiah, ³ComSaUiVon of foXU bXilding 
archetype characterization methods in urban building energy modeling (UBEM): A residential case study in 
KXZaiW CiW\,´ Energy Build., vol. 154, pp. 321±334, Nov. 2017, doi: 10.1016/j.enbuild.2017.08.029. 

[47] G. Dall¶O¶, A. GalanWe, and M. ToUUi, ³A meWhodolog\ foU Whe eneUg\ SeUfoUmance claVVificaWion of 
UeVidenWial bXilding VWock on an XUban Vcale,´ Energy Build., vol. 48, pp. 211±219, May 2012, doi: 
10.1016/j.enbuild.2012.01.034. 

[48] A. A. FamX\ibo, A. DXff\, and P. SWUachan, ³DeYeloSing aUcheW\SeV foU domeVWic dZellingV²An Irish case 
VWXd\,´ Energy Build., vol. 50, pp. 150±157, Jul. 2012, doi: 10.1016/j.enbuild.2012.03.033. 

[49] G. TaUdioli, R. KeUUigan, M. OaWeV, J. O¶Donnell, and D. P. Finn, ³IdenWificaWion of UeSUeVenWaWiYe bXildingV 
and building groups in urban datasets using a novel pre-processing, classification, clustering and predictive 
modelling aSSUoach,´ Build. Environ., vol. 140, pp. 90±106, Aug. 2018, doi: 
10.1016/j.buildenv.2018.05.035. 

[50] A. K. Jain, M. N. MXUW\, and P. J. Fl\nn, ³DaWa ClXVWeUing: A ReYieZ,´ ACM Comput Surv, vol. 31, no. 3, 
pp. 264±323, Sep. 1999, doi: 10.1145/331499.331504. 

[51] G. Chicco, R. NaSoli, and F. Piglione, ³ComSaUiVonV among clXVWeUing WechniTXeV foU elecWUiciW\ cXVWomeU 
claVVificaWion,´ IEEE Trans. Power Syst., vol. 21, no. 2, pp. 933±940, May 2006, doi: 
10.1109/TPWRS.2006.873122. 

[52] A. K. TanZaU, E. CUiVoVWomi, P. FeUUaUo, M. RaXgi, M. TXcci, and G. GiXnWa, ³ClXVWeUing anal\ViV of Whe 
elecWUical load in eXUoSean coXnWUieV,´ in 2015 International Joint Conference on Neural Networks 
(IJCNN), Killarney, Ireland, 2015, pp. 1±8, doi: 10.1109/IJCNN.2015.7280329. 

[53] N. GhiaVVi and A. MahdaYi, ³RedXcWiYe boWWom-up urban energy computing supported by multivariate 
clXVWeU anal\ViV,´ Energy Build., vol. 144, pp. 372±386, Jun. 2017, doi: 10.1016/j.enbuild.2017.03.004. 

[54] A. Schaefer and E. GhiVi, ³MeWhod foU obWaining UefeUence bXildingV,´ Energy Build., vol. 128, pp. 660±
672, Sep. 2016, doi: 10.1016/j.enbuild.2016.07.001. 

[55] X. Li et al., ³DeYeloSing XUban UeVidenWial UefeUence bXildingV XVing clXVWeUing anal\ViV of VaWelliWe imageV,´ 
Energy Build., vol. 169, pp. 417±429, Jun. 2018, doi: 10.1016/j.enbuild.2018.03.064. 

[56] R. A. LaUa, F. CaSSelleWWi, P. Romagnoni, and A. GaVSaUella, ³SelecWion of ReSUeVenWaWiYe BXildingV 
WhUoXgh PUeliminaU\ ClXVWeU Anal\ViV,´ In Proc. International high performance buildings conference, p. 
11, 2014. 

[57] M. P. Guillaumet, P. Borges, M. Rosas-Casals, and O. Travesset-BaUo, ³BUILDING ARCHETYPES IN 
URBAN ENERGY MODELS. A COMPARATIVE CASE STUDY OF DETERMINISTIC AND 
STATISTICAL METHODS IN ANDORRA.,´ in Proc. uSIM18 Urban Energy Simulation, p. 10. 

[58] ³IEE PUojecW TABULA.´ hWWS://eSiVcoSe.eX/iee-project/tabula/ (accessed Mar. 13, 2019). 
[59] ³EneUg\ Efficienc\ TUendV & PolicieV _ ODYSSEE-MURE.´ hWWS://ZZZ.od\VVee-mure.eu/ (accessed Apr. 

09, 2019). 
[60] ³ENTRANZEௗ: Welcome Wo ENTRANZE SUojecW Sage.´ hWWSV://ZZZ.enWUan]e.eX/ (acceVVed ASU. 09, 

2019). 
[61] J. Widpn and E. WlckelgnUd, ³A high-resolution stochastic model of domestic activity patterns and 

elecWUiciW\ demand,´ Appl. Energy, vol. 87, no. 6, pp. 1880±1892, Jun. 2010, doi: 
10.1016/j.apenergy.2009.11.006. 

[62] J. Widpn, M. LXndh, I. VaVVileYa, E. DahlTXiVW, K. EllegnUd, and E. WlckelgnUd, ³ConVWUXcWing load 
profiles for household electricity and hot water from time-use data²Modelling aSSUoach and YalidaWion,´ 
Energy Build., vol. 41, no. 7, pp. 753±768, Jul. 2009, doi: 10.1016/j.enbuild.2009.02.013. 

[63] J. Widpn, A. M. NilVVon, and E. WlckelgnUd, ³A combined MaUkoY-chain and bottom-up approach to 
modelling of domeVWic lighWing demand,´ Energy Build., vol. 41, no. 10, pp. 1001±1012, Oct. 2009, doi: 
10.1016/j.enbuild.2009.05.002. 

[64] D. Robinson et al., ³CITYSIM: COMPREHENSIVE MICRO-SIMULATION OF RESOURCE FLOWS 
FOR SUSTAINABLE URBAN PLANNING,´ in Proc. International IBPSA Conference, p. 8. 



25 
 

[65] D. Robinson et al., ³SUNWool ± A new modelling paradigm for simulating and optimising urban 
VXVWainabiliW\,´ Sol. Energy, vol. 81, no. 9, pp. 1196±1211, Sep. 2007, doi: 10.1016/j.solener.2007.06.002. 

[66] P. Remmen, M. LaXVWeU, M. ManV, M. FXchV, T. OVWeUhage, and D. M�lleU, ³TEASER: an oSen Wool foU 
XUban eneUg\ modelling of bXilding VWockV,´ J. Build. Perform. Simul., vol. 11, no. 1, pp. 84±98, Jan. 2018, 
doi: 10.1080/19401493.2017.1283539. 

[67] K. Sun, T. Hong, S. C. Taylor-Lange, and M. A. PieWWe, ³A SaWWeUn-based automated approach to building 
eneUg\ model calibUaWion,´ Appl. Energy, vol. 165, pp. 214±224, Mar. 2016, doi: 
10.1016/j.apenergy.2015.12.026. 

[68] M. H. Kristensen, R. E. Hedegaard, and S. PeteUVen, ³HieUaUchical calibUaWion of aUcheW\SeV foU XUban 
bXilding eneUg\ modeling,´ Energy Build., vol. 175, pp. 219±234, Sep. 2018, doi: 
10.1016/j.enbuild.2018.07.030. 

[69] M. H. KUiVWenVen, R. ChoXdhaU\, R. H. PedeUVen, and S. PeWeUVen, ³Ba\eVian CalibUation Of Residential 
BXilding ClXVWeUV UVing A Single GeomeWUic BXilding ReSUeVenWaWion,´ in Proc. 15th IBPSA Conference, p. 
10, 2017. 

[70] S. HeiSle and D. J. SailoU, ³UVing bXilding eneUg\ VimXlaWion and geoVSaWial modeling WechniTXeV Wo 
determine high reVolXWion bXilding VecWoU eneUg\ conVXmSWion SUofileV,´ Energy Build., vol. 40, no. 8, pp. 
1426±1436, Jan. 2008, doi: 10.1016/j.enbuild.2008.01.005. 

[71] A. T. BooWh, R. ChoXdhaU\, and D. J. SSiegelhalWeU, ³Handling XnceUWainW\ in hoXVing VWock modelV,´ Build. 
Environ., vol. 48, pp. 35±47, Feb. 2012, doi: 10.1016/j.buildenv.2011.08.016. 

[72] D. Coakle\, P. RafWeU\, and M. Keane, ³A UeYieZ of meWhodV Wo maWch bXilding eneUg\ VimXlaWion modelV 
Wo meaVXUed daWa,´ Renew. Sustain. Energy Rev., vol. 37, pp. 123±141, Sep. 2014, doi: 
10.1016/j.rser.2014.05.007. 

[73] C. Cerezo, J. Sokol, C. Reinhart, and A. Al-MXmin, ³THREE METHODS FOR CHARACTERIZING 
BUILDING ARCHETYPES IN URBAN ENERGY SIMULATION. A CASE STUDY IN KUWAIT 
CITY.,´ Proceedings of BS2015: 14th Conference of International Building Performance Simulation 
Association, p. 9. 

[74] P. CaSXWo, G. CoVWa, and S. FeUUaUi, ³A VXSSoUWing meWhod foU defining eneUg\ VWUaWegieV in Whe bXilding 
VecWoU aW XUban Vcale,´ Energy Policy, vol. 55, pp. 261±270, Apr. 2013, doi: 10.1016/j.enpol.2012.12.006. 

[75] Y. J. HXang and D. B. CUaZle\, ³DoeV iW MaWWeU Which WeaWheU DaWa YoX UVe in EneUg\ SimXlaWionV?,´ in 
Proc. American Council for an Energy-Efficieny Economy (ACEEE) summer study on energy efficiency in 
buildings, p. 11. 

[76] M. Herrera et al., ³A UeYieZ of cXUUenW and fXWXUe ZeaWheU daWa foU bXilding VimXlaWion,´ Build. Serv. Eng. 
Res. Technol., vol. 38, no. 5, pp. 602±627, Sep. 2017, doi: 10.1177/0143624417705937. 

[77] G. EYola, L. MaUleWWa, and D. Cimino, ³WeaWheU daWa moUphing to improve building energy modeling in an 
XUban conWe[W,´ Math. Model. Eng. Probl., vol. 5, no. 3, pp. 211±216, Sep. 2018, doi: 
10.18280/mmep.050312. 

[78] R. BXffaW, A. FUoemelW, N. HeeUen, M. RaXbal, and S. HellZeg, ³Big daWa GIS anal\ViV foU noYel 
aSSUoacheV in bXilding VWock modelling,´ Appl. Energy, vol. 208, pp. 277±290, Dec. 2017, doi: 
10.1016/j.apenergy.2017.10.041. 

[79] G. Ward, Radiance. Berkeley, CA, USA: Environmental Energy Technologies Division of Lawrence 
Berkeley National Laboratory, 1997. 

[80] C. F. ReinhaUW, ³Da\lighW AYailabiliW\ and ManXal LighWing ConWUol in Office BXildingV - Simulation 
SWXdieV and Anal\ViV of MeaVXUemenWV,´ PhD TheViV, UniYeUViW\ of KaUlVUXhe, 2001. 

[81] C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile, ³Modeling Whe inWeUacWion of lighW beWZeen 
diffXVe VXUfaceV,´ Comput. Graph., vol. 18, no. 3, p. 10, 1984. 

[82] D. RobinVon and A. SWone, ³SolaU UadiaWion modelling in Whe XUban conWe[W,´ Sol. Energy, vol. 77, no. 3, pp. 
295±309, Sep. 2004, doi: 10.1016/j.solener.2004.05.010. 

[83] D. RobinVon and A. SWone, ³A VimSlified UadioViW\ algoUiWhm foU geneUal XUban UadiaWion e[change,´ Build. 
Serv. Eng. Res. Technol., vol. 26, no. 4, pp. 271±284, 2005. 

[84] R. PeUe], R. SealV, and J. MichalVk\, ³All-weather model for sky luminance distribution² preliminary 
configXUaWion and YalidaWion,´ Sol. Energy, vol. 50, no. 3, pp. 235±245, 1993. 

[85] R. PeUe], P. Ineichen, R. SealV, J. MichalVk\, and R. SWeZaUW, ³Modeling da\lighW aYailabiliW\ and 
irradiance components from diUecW and global iUUadiance,´ Sol. Energy, vol. 44, no. 5, pp. 271±289, Jan. 
1990, doi: 10.1016/0038-092X(90)90055-H. 

[86] ³EneUg\PlXV _ EneUg\PlXV.´ hWWSV://eneUg\SlXV.neW/ (acceVVed Jan. 10, 2019). 
[87] C. Cerezo Davila, C. F. Reinhart, and J. L. BemiV, ³Modeling BoVWon: A ZoUkfloZ foU Whe efficienW 

geneUaWion and mainWenance of XUban bXilding eneUg\ modelV fUom e[iVWing geoVSaWial daWaVeWV,´ Energy, 
vol. 117, pp. 237±250, Dec. 2016, doi: 10.1016/j.energy.2016.10.057. 

[88] T. Hong, Y. Chen, S. H. Lee, and M. A. PieWWe, ³CiW\BES: A Web-based Platform to Support City-Scale 
BXilding EneUg\ Efficienc\,´ in Proc. Urban Computing 2016,  p. 9. 



26 
 

[89] P. FX and P. M. Rich, ³A geomeWUic VolaU UadiaWion model and iWV aSSlicaWionV in agUicXlWXUe and foUeVWU\,´ 
in Proceedings of the Second International Conference on Geospatial Information in Agriculture and 
Forestry, 2000, vol. 1, pp. 357±364, Accessed: 17-Jul-2015. [Online]. Available: 
http://solar.maps.umn.edu/assets/pdf/fu_rich_2000.pdf. 

[90] K. Mahmud, U. Amin, M. J. HoVVain, and J. RaYiVhankaU, ³ComSXWaWional WoolV foU deVign, anal\ViV, and 
managemenW of UeVidenWial eneUg\ V\VWemV,´ Appl. Energy, vol. 221, pp. 535±556, Jul. 2018, doi: 
10.1016/j.apenergy.2018.03.111. 

[91] ³IDA ICE - SimXlaWion SofWZaUe _ EQUA.´ hWtps://www.equa.se/en/ida-ice (accessed Jan. 10, 2019). 
[92] ³TRNSYSௗ: TUanVienW S\VWem SimXlaWion Tool.´ hWWS://ZZZ.WUnV\V.com/ (acceVVed Jan. 10, 2019). 
[93] F. JohaUi, A. M. NilVVon, M. cbeUg, and J. Widpn, ³ToZaUdV XUban bXilding eneUg\ modelling: a 

comSaUiVon of aYailable WoolV,´ in Proc. eceee 2019 Summer Study on energy efficiency, 1515-1524, p. 10, 
2019. 

[94] C. F. ReinhaUW, T. Dogan, J. A. JakXbiec, T. Rakha, and A. Sang, ³UMI - AN URBAN SIMULATION 
ENVIRONMENT FOR BUILDING 2 ENERGY USE, DAYLIGHTING AND WALKABILITY,´ 203, 
Accessed: 22-Aug-2018. [Online]. Available: http://www.ibpsa.org/proceedings/BS2013/p_1404.pdf. 

[95] Y. Chen and T. Hong, ³ImSacWV of bXilding geomeWU\ modeling meWhodV on Whe VimXlaWion UeVXlWV of XUban 
bXilding eneUg\ modelV,´ Appl. Energy, vol. 215, pp. 717±735, Apr. 2018, doi: 
10.1016/j.apenergy.2018.02.073. 

[96] J. H. KlmSf and D. RobinVon, ³A VimSlified WheUmal model Wo VXSSoUW anal\ViV of XUban UeVoXUce floZV,´ 
Energy Build., vol. 39, no. 4, pp. 445±453, Apr. 2007, doi: 10.1016/j.enbuild.2006.09.002. 

[97] J. A. FonVeca and A. SchlXeWeU, ³InWegUaWed model foU chaUacWeUi]aWion of VSaWioWemSoUal bXilding eneUg\ 
conVXmSWion SaWWeUnV in neighboUhoodV and ciW\ diVWUicWV,´ Appl. Energy, vol. 142, pp. 247±265, Mar. 2015, 
doi: 10.1016/j.apenergy.2014.12.068. 

[98] E.-J. Kim, G. Plessis, J.-L. Hubert, and J.-J. RoX[, ³UUban eneUg\ VimXlaWion: SimSlificaWion and UedXcWion 
of bXilding enYeloSe modelV,´ Energy Build., vol. 84, pp. 193±202, Dec. 2014, doi: 
10.1016/j.enbuild.2014.07.066. 

[99] G. KokogiannakiV, P. SWUachan, and J. ClaUke, ³ComSaUiVon of Whe VimSlified meWhodV of Whe ISO 13790 
VWandaUd and deWailed modelling SUogUamV in a UegXlaWoU\ conWe[W,´ J. Build. Perform. Simul., vol. 1, no. 4, 
pp. 209±219, Dec. 2008, doi: 10.1080/19401490802509388. 

[100] T. Dogan and C. ReinhaUW, ³Shoebo[eU: An algoUiWhm foU abVWUacWed UaSid mXlWi-zone urban building 
eneUg\ model geneUaWion and VimXlaWion,´ Energy Build., vol. 140, pp. 140±153, Apr. 2017, doi: 
10.1016/j.enbuild.2017.01.030. 

[101] ³Home _ aVhUae.oUg.´ hWWSV://ZZZ.aVhUae.oUg/ (acceVVed Feb. 22, 2019). 
[102] L. SmiWh, ³Be\ond Whe Shoebo[: TheUmal Zoning ASSUoacheV foU ComSle[ BXilding ShaSeV,´ ASHRAE 

Transactions . 2012, Vol. 118 Issue 2, p141-148. 8p. 
[103] T. Dogan, C. Reinhart, and P. MichalatoV, ³AXWomaWed mXlWi-zone building energy model generation for 

VchemaWic deVign and XUban maVVing VWXdieV,´ in Proc. IBPSA eSim Conf., p. 14. 
[104] R. Nouvel et al., ³SimSWadW, a neZ ZoUkfloZ-driven urban energy simulation platform for CityGML city 

modelV,´ in Proceedings of International Conference CISBAT 2015 Future Buildings and Districts 
Sustainability from Nano to Urban Scale, 2015, pp. 889±894, Accessed: 14-Feb-2017. [Online]. Available: 
https://infoscience.epfl.ch/record/213437/files/9_NOUVEL1187.pdf. 

[105] A. GaVSaUella and G. PeUnigoWWo, ³ComSaUiVon Of QXaVi-Steady State And Dynamic Simulation 
Approaches For The Calculation Of Building Energy Needs: Thermal LoVVeV,´ S. 11, 2012. 

[106] J. H. KlmSf and D. RobinVon, ³OPTIMISATION OF URBAN ENERGY DEMAND USING AN 
EVOLUTIONARY ALGORITHM,´ in Proc. IBPSA Conference, 2009. 

[107] R. NoXYel, M. ZiUak, H. DaVWageeUi, V. CooUV, and U. EickeU, ³URBAN ENERGY ANALYSIS BASED 
ON 3D CITY MODEL FOR NATIONAL SCALE APPLICATIONS,´ S. 8. 

[108] P. TXominen, R. HoloSainen, L. EVkola, J. JokiValo, and M. AiUakVinen, ³CalcXlaWion meWhod and Wool foU 
aVVeVVing eneUg\ conVXmSWion in Whe bXilding VWock,´ Build. Environ., vol. 75, pp. 153±160, May 2014, doi: 
10.1016/j.buildenv.2014.02.001. 

[109] P. RiedeUeU, V. PaUWena\, N. PeUe], C. NociWo, R. TUigance, and T. GXioW, ³DeYeloSmenW of a VimXlaWion 
SlaWfoUm foU Whe eYalXaWion of diVWUicW eneUg\ V\VWem SeUfoUmanceV,´ Unpublished, 2015, doi: 
10.13140/rg.2.1.4668.8401/1. 

[110] N. PeUe], P. RiedeUeU, C. InaUd, and V. PaUWena\, ³TheUmal bXilding modelling adaSWed Wo diVWUicW eneUg\ 
VimXlaWion,´ in Proc. IBPSA Conference.,  p. 8. 

[111] J. A. Fonseca, T.-A. NgX\en, A. SchlXeWeU, and F. MaUechal, ³CiW\ Energy Analyst (CEA): Integrated 
fUameZoUk foU anal\ViV and oSWimi]aWion of bXilding eneUg\ V\VWemV in neighboUhoodV and ciW\ diVWUicWV,´ 
Energy Build., vol. 113, pp. 202±226, Feb. 2016, doi: 10.1016/j.enbuild.2015.11.055. 

[112] Y. Chen, T. Hong, and M. A. PieWWe, ³CiW\-Scale Building Retrofit Analysis: A Case Study using 
CiW\BES,´ Build. Simul., p. 8, 2017. 



27 
 

[113] P. Nageler et al., ³NoYel YalidaWed meWhod foU GIS baVed aXWomaWed d\namic XUban bXilding eneUg\ 
VimXlaWionV,´ Energy, vol. 139, pp. 142±154, Nov. 2017, doi: 10.1016/j.energy.2017.07.151. 

[114] D. Wang, J. LandolW, G. MaYUomaWidiV, K. OUehoXnig, and J. CaUmelieW, ³CESAR: A boWWom-up building 
VWock modelling Wool foU SZiW]eUland Wo addUeVV VXVWainable eneUg\ WUanVfoUmaWion VWUaWegieV,´ Energy 
Build., vol. 169, pp. 9±26, Jun. 2018, doi: 10.1016/j.enbuild.2018.03.020. 

[115] G. AgXgiaUo, J. BenneU, P. CiSUiano, and R. NoXYel, ³The EneUg\ ASSlicaWion Domain E[WenVion foU 
CiW\GML: enhancing inWeUoSeUabiliW\ foU XUban eneUg\ VimXlaWionV,´ Open Geospatial Data Softw. Stand., 
vol. 3, no. 1, p. 2, Mar. 2018, doi: 10.1186/s40965-018-0042-y. 

[116] R. SWoXffV, H. TaXVcheU, F. Biljecki, R. SWoXffV, H. TaXVcheU, and F. Biljecki, ³AchieYing ComSleWe and 
Near-LoVVleVV ConYeUVion fUom IFC Wo CiW\GML,´ ISPRS Int. J. Geo-Inf., vol. 7, no. 9, p. 355, Aug. 2018, 
doi: 10.3390/ijgi7090355. 

[117] F. Biljecki, K. KXmaU, and C. Nagel, ³CiW\GML ASSlicaWion Domain E[WenVion (ADE): oYeUYieZ of 
deYeloSmenWV,´ Open Geospatial Data Softw. Stand., vol. 3, no. 1, p. 13, Aug. 2018, doi: 10.1186/s40965-
018-0055-6. 

[118] T. KXW]neU and T. H. Kolbe, ³E[Wending SemanWic 3D CiW\ ModelV b\ SXSSl\ and DiVSoVal NeWZoUkV foU 
Anal\Ving Whe UUban SXSSl\ SiWXaWion,´ S. 13, 2016. 

[119] Z. Yao et al., ³3DCiW\DB - a 3D geodatabase solution for the management, analysis, and visualization of 
VemanWic 3D ciW\ modelV baVed on CiW\GML,´ Open Geospatial Data Softw. Stand., vol. 3, no. 1, Dec. 
2018, doi: 10.1186/s40965-018-0046-7. 

[120] D. G. De PaoU, S. J. WhiWme\eU, and C. BenWle\, ³CESIUM ² A virtual globe with strong potential 
aSSlicaWionV in geoVcience edXcaWion,´ in Geological Society of America Abstracts with Programs, Albany, 
New York, 2016, doi: 10.1130/abs/2016NE-272098. 

[121] H. E. Landsberg, The Urban Climate. Academic Press, 1981. 
[122] M. Santamouris et al., ³On Whe imSacW of XUban climaWe on Whe eneUg\ conVXmSWion of bXildingV,´ Sol. 

Energy, vol. 70, no. 3, pp. 201±216, Jan. 2001, doi: 10.1016/S0038-092X(00)00095-5. 
[123] K. W. OleVon, G. B. Bonan, J. Feddema, M. VeUWenVWein, and C. S. B. GUimmond, ³An UUban 

PaUameWeUi]aWion foU a Global ClimaWe Model. PaUW I: FoUmXlaWion and EYalXaWion foU TZo CiWieV,´ J. Appl. 
Meteorol. Climatol., vol. 47, no. 4, pp. 1038±1060, Apr. 2008, doi: 10.1175/2007JAMC1597.1. 

[124] D. J. Stensrud, Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models. 
Cambridge University Press, 2007. 

[125] G. F. GaUXma, ³ReYieZ of XUban VXUface SaUameWeUi]aWionV foU nXmeUical climaWe modelV,´ Urban Clim., 
vol. 24, pp. 830±851, Jun. 2018, doi: 10.1016/j.uclim.2017.10.006. 

[126] H. KXVaka, H. Kondo, Y. KikegaZa, and F. KimXUa, ³A SimSle Single-Layer Urban Canopy Model For 
Atmospheric Models: Comparison With Multi-La\eU And Slab ModelV,´ Bound.-Layer Meteorol., vol. 101, 
no. 3, pp. 329±358, Dec. 2001, doi: 10.1023/A:1019207923078. 

[127] F. Salamanca, A. MaUWilli, M. TeZaUi, and F. Chen, ³A SWXd\ of Whe UUban BoXndaU\ La\eU UVing 
Different Urban Parameterizations and High-Resolution Urban CanoS\ PaUameWeUV ZiWh WRF,´ J. Appl. 
Meteorol. Climatol., vol. 50, no. 5, pp. 1107±1128, Dec. 2010, doi: 10.1175/2010JAMC2538.1. 

[128] D. Mauree, J. Kämpf, and J.-L. ScaUWe]]ini, ³MXlWi-scale modelling to improve climate data for building 
eneUg\ modelV,´ Sresented at the 14th International Conference of IBPSA - Building Simulation 2015, BS 
2015, Conference Proceedings, 2015, pp. 979±986. 

[129] R. Yao, Q. LXo, and B. Li, ³A VimSlified maWhemaWical model foU XUban micUoclimaWe VimXlaWion,´ Build. 
Environ., vol. 46, no. 1, pp. 253±265, Jan. 2011, doi: 10.1016/j.buildenv.2010.07.019. 

[130] B. MoUille, N. LaX]eW, and M. MXV\, ³SOLENE-microclimate: A Tool to Evaluate Envelopes Efficiency 
on EneUg\ ConVXmSWion aW DiVWUicW Scale.,´ Energy Procedia, vol. 78, pp. 1165±1170, Nov. 2015, doi: 
10.1016/j.egypro.2015.11.088. 

[131] Y. ToSaUlaU, B. Blocken, B. MaiheX, and H. Yan, ³A UeYieZ on Whe CFD anal\ViV of XUban micUoclimaWe,´ 
Renew. Sustain. Energy Rev., vol. 80, pp. 1613±1640, 2017, doi: 10.1016/j.rser.2017.05.248. 

[132] M. Braulio-Gon]alo, M. D. BoYea, M. J. RXi, and P. JXan, ³A meWhodolog\ foU SUedicWing Whe eneUg\ 
performance and indoor thermal comfort of residential stocks on the neighbourhood and city scales. A case 
VWXd\ in SSain,´ J. Clean. Prod., vol. 139, pp. 646±665, Dec. 2016, doi: 10.1016/j.jclepro.2016.08.059. 

[133] L. Chen and E. Ng, ³OXWdooU WheUmal comfoUW and oXWdooU acWiYiWieV: A UeYieZ of UeVeaUch in Whe SaVW 
decade,´ Cities, vol. 29, no. 2, pp. 118±125, Apr. 2012, doi: 10.1016/j.cities.2011.08.006. 

[134] S. Coccolo, J. Kämpf, J.-L. ScaUWe]]ini, and D. PeaUlmXWWeU, ³OXWdooU hXman comfoUW and WheUmal VWUeVV: 
A comSUehenViYe UeYieZ on modelV and VWandaUdV,´ Urban Clim., vol. 18, pp. 33±57, Dec. 2016, doi: 
10.1016/j.uclim.2016.08.004. 

[135] G. Jendritzky, R. de DeaU, and G. HaYeniWh, ³UTCI²Wh\ anoWheU WheUmal inde[?,´ Int. J. Biometeorol., 
vol. 56, no. 3, pp. 421±428, May 2012, doi: 10.1007/s00484-011-0513-7. 



28 
 

[136] G. J. Steeneveld, S. Koopmans, B. G. Heusinkveld, L. W. A. van Hove, and A. a. M. Holtslag, 
³QXanWif\ing XUban heaW iVland effecWV and hXman comfoUW foU ciWieV of YaUiable Vi]e and XUban moUSholog\ 
in Whe NeWheUlandV,´ J. Geophys. Res. Atmospheres, vol. 116, no. D20, 2011, doi: 10.1029/2011JD015988. 

[137] S. EbUahimabadi, ³OXWdooU ComfoUW in Cold ClimaWeV,´ PhD TheViV, LXlen UniYeUViW\ of Technolog\, 
Luleå, 2015. 

[138] S. ThoUVVon, M. LindTYiVW, and S. LindTYiVW, ³TheUmal bioclimaWic condiWionV and SaWWeUnV of behaYioXU in 
an XUban SaUk in G|WeboUg, SZeden,´ Int. J. Biometeorol., vol. 48, no. 3, pp. 149±156, Feb. 2004, doi: 
10.1007/s00484-003-0189-8. 

[139] T. Rakha, ³ToZaUdV comfoUWable and Zalkable ciWieVௗ: VSaWiall\ UeVolYed oXWdooU WheUmal comfoUW anal\ViV 
linked to travel survey-baVed hXman acWiYiW\ VchedXleV,´ TheViV, MaVVachXVeWWV InVWiWXWe of Technology, 
2015. 

[140] M. V. Tabib, A. RaVheed, and T. PUi\a UWeng, ³MeWhodolog\ foU aVVeVVing c\cling comfoUW dXUing a VmaUW 
ciW\ deYeloSmenW,´ Energy Procedia, vol. 122, pp. 361±366, Sep. 2017, doi: 10.1016/j.egypro.2017.07.286. 

[141] E. Naboni, M. Meloni, S. Coccolo, J. Kaempf, and J.-L. ScaUWe]]ini, ³An oYeUYieZ of VimXlaWion WoolV foU 
SUedicWing Whe mean UadianW WemSeUaWXUe in an oXWdooU VSace,´ Energy Procedia, vol. 122, pp. 1111±1116, 
Sep. 2017, doi: 10.1016/j.egypro.2017.07.471. 

[142] C. Miller, D. ThomaV, J. KlmSf, and A. SchlXeWeU, ³UUban and bXilding mXlWiVcale co-simulation: case 
VWXd\ imSlemenWaWionV on WZo XniYeUViW\ camSXVeV,´ J. Build. Perform. Simul., vol. 11, no. 3, pp. 309±321, 
May 2018, doi: 10.1080/19401493.2017.1354070. 

[143] N. Mohammadi and J. E. Ta\loU, ³UUban eneUg\ flX[: SSaWioWemSoUal flXcWXaWionV of bXilding eneUg\ 
consumption and human mobility-dUiYen SUedicWion,´ Appl. Energy, vol. 195, pp. 810±818, Jun. 2017, doi: 
10.1016/j.apenergy.2017.03.044. 

[144] J. Clift, R and Druckmna, A and ChUiVWic, I and Kenned\, C and KeiUVWead, ³UUban meWaboliVm: a UeYieZ 
in Whe UK conWe[W. GoYeUnmenW Office foU Science,´ 2015. 

[145] H. Barbosa et al., ³HXman mobiliW\: ModelV and aSSlicaWionV,´ Phys. Rep., vol. 734, pp. 1±74, 2018, doi: 
10.1016/j.physrep.2018.01.001. 

[146] T. L. MagnanWi, ³ShoUWeVW PaWhV , Single OUigin-DeVWinaWion NeWZoUk DeVign , and AVVociaWed Pol\hedUa,´ 
1993. 

[147] N. CaceUeV, J. P. WidebeUg, and F. G. BeniWe], ³DeUiYing oUigin ± destination data from a mobile phone 
network,´ SS. 15±26, doi: 10.1049/iet-its. 

[148] G. K. ZiSf, ³The P1 P2 / D H\SoWheViVௗ: On Whe InWeUciW\ MoYemenW of PeUVonV AXWhoU ( V ): GeoUge 
KingVle\ ZiSf SoXUceௗ: AmeUican Sociological ReYieZ , Vol . 11 , No . 6 ( Dec ., 1946 ), SS . 677-686 
PXbliVhed b\ௗ: AmeUican Sociological AVVociaWion SWable URLௗ: hWWS:/,´ Am. Sociol. Rev., vol. 11, no. 6, pp. 
677±686, 1946. 

[149] V. Palch\koY, M. MiWUoYic, H. H. Jo, J. SaUamlki, and R. K. Pan, ³InfeUUing hXman mobiliW\ XVing 
commXnicaWion SaWWeUnV,´ Sci. Rep., vol. 4, pp. 1±6, 2014, doi: 10.1038/srep06174. 

[150] R. K. Pan, K. KaVki, and S. FoUWXnaWo, ³WoUld ciWaWion and collaboUaWion neWZoUkV: UncoYeUing Whe Uole of 
geogUaSh\ in Vcience,´ Sci. Rep., vol. 2, pp. 1±7, 2012, doi: 10.1038/srep00902. 

[151] P. Kaluza, A. KölzVch, M. T. GaVWneU, and B. BlaViXV, ³The comSle[ neWZoUk of global caUgo VhiS 
moYemenWV.,´ J. R. Soc. Interface, vol. 7, no. 48, pp. 1093±103, 2010, doi: 10.1098/rsif.2009.0495. 

[152] W. S. JXng, F. Wang, and H. E. SWanle\, ³GUaYiW\ model in Whe KoUean highZa\,´ Epl, vol. 81, no. 4, pp. 
0±6, 2008, doi: 10.1209/0295-5075/81/48005. 

[153] D. Balcan, V. Coli]]a, B. GonoalYeV, H. HX, J. J. RamaVco, and A. VeVSignani, ³MXlWiVcale mobiliW\ 
netZoUkV and Whe VSaWial VSUeading of infecWioXV diVeaVeV.,´ Proc. Natl. Acad. Sci. U. S. A., vol. 106, no. 51, 
pp. 21484±9, 2009, doi: 10.1073/pnas.0906910106. 

[154] F. Simini, M. C. Gon]ile], A. MaUiWan, and A. L. BaUabiVi, ³A XniYeUVal model foU mobiliW\ and migration 
SaWWeUnV,´ Nature, vol. 484, no. 7392, pp. 96±100, 2012, doi: 10.1038/nature10856. 

[155] A. P. MaVXcci, J. SeUUaV, A. JohanVVon, and M. BaWW\, ³GUaYiW\ YeUVXV UadiaWion modelV: On Whe 
imSoUWance of Vcale and heWeUogeneiW\ in commXWing floZV,´ Phys. Rev. E - Stat. Nonlinear Soft Matter 
Phys., vol. 88, no. 2, pp. 1±8, 2013, doi: 10.1103/PhysRevE.88.022812. 

[156] M. LenoUmand, A. BaVVolaV, and J. J. RamaVco, ³S\VWemaWic comSaUiVon of WUiS diVWUibXWion laZV and 
modelV,´ J. Transp. Geogr., vol. 51, pp. 158±169, 2016, doi: 10.1016/j.jtrangeo.2015.12.008. 

[157] M. LenoUmand, S. HXeW, F. GaUgiXlo, and G. DeffXanW, ³A UniYeUVal Model of CommXWing NeWZoUkV,´ 
PLoS ONE, vol. 7, no. 10, 2012, doi: 10.1371/journal.pone.0045985. 

[158] X. Liang, J. Zhao, L. Dong, and K. XX, ³UnUaYeling Whe oUigin of e[SonenWial laZ in inWUa-urban human 
mobiliW\,´ Sci. Rep., vol. 3, 2013, doi: 10.1038/srep02983. 

[159] F. Simini, A. MaUiWan, and Z. Npda, ³HXman MobiliW\ in a ConWinXXm ASSUoach,´ PLoS ONE, vol. 8, no. 
3, 2013, doi: 10.1371/journal.pone.0060069. 

[160] Y. Yang, C. HeUUeUa, N. Eagle, and M. C. Gon]ile], ³LimiWV of SUedicWabiliW\ in commXWing floZV in Whe 
abVence of daWa foU calibUaWion,´ Sci. Rep., vol. 4, pp. 1±9, 2014, doi: 10.1038/srep05662. 


